Suppr超能文献

通过实时PCR检测宿主对海洋卵菌病原体迪克逊氏宽壳水云的易感性差异:并非所有藻类都一样。

Detection of differential host susceptibility to the marine oomycete pathogen Eurychasma dicksonii by real-time PCR: not all algae are equal.

作者信息

Gachon Claire M M, Strittmatter Martina, Müller Dieter G, Kleinteich Julia, Küpper Frithjof C

机构信息

Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland, United Kingdom.

出版信息

Appl Environ Microbiol. 2009 Jan;75(2):322-8. doi: 10.1128/AEM.01885-08. Epub 2008 Nov 14.

Abstract

In the marine environment, a growing body of evidence points to parasites as key players in the control of population dynamics and overall ecosystem structure. However, their prevalence and impact on marine macroalgal communities remain virtually unknown. Indeed, infectious diseases of seaweeds are largely underdocumented, partly because of the expertise required to diagnose them with a microscope. Over the last few years, however, real-time quantitative PCR (qPCR) has emerged as a rapid and reliable alternative to visual symptom scoring for monitoring pathogens. Thus, we present here a qPCR assay suitable for the detection and quantification of the intracellular oomycete pathogen Eurychasma dicksonii in its ectocarpalean and laminarialean brown algal hosts. qPCR and microscopic observations made of laboratory-controlled cultures revealed that clonal brown algal strains exhibit different levels of resistance against Eurychasma, ranging from high susceptibility to complete absence of symptoms. This observation strongly argues for the existence of a genetic determinism for disease resistance in brown algae, which would have broad implications for the dynamics and genetic structure of natural populations. We also used qPCR for the rapid detection of Eurychasma in filamentous brown algae collected in Northern Europe and South America and found that the assay is specific, robust, and widely applicable to field samples. Hence, this study opens the perspective of combining large-scale disease monitoring in the field with laboratory-controlled experiments on the genome model seaweed Ectocarpus siliculosus to improve our understanding of brown algal diseases.

摘要

在海洋环境中,越来越多的证据表明寄生虫是控制种群动态和整体生态系统结构的关键因素。然而,它们在海洋大型藻类群落中的流行情况及其影响实际上仍不为人知。事实上,海藻的传染病在很大程度上记录不足,部分原因是需要显微镜诊断的专业知识。然而,在过去几年中,实时定量PCR(qPCR)已成为一种快速可靠的替代方法,可用于监测病原体,替代视觉症状评分。因此,我们在此展示一种qPCR检测方法,适用于检测和定量细胞内卵菌病原体迪克逊藻(Eurychasma dicksonii)在其外果皮藻和海带目褐藻宿主中的情况。对实验室控制培养物进行的qPCR和显微镜观察表明,克隆褐藻菌株对迪克逊藻表现出不同程度的抗性,从高敏感性到完全无症状。这一观察结果有力地证明了褐藻中存在抗病性的遗传决定因素,这将对自然种群的动态和遗传结构产生广泛影响。我们还使用qPCR快速检测在北欧和南美采集的丝状褐藻中的迪克逊藻,发现该检测方法具有特异性、稳健性,并且广泛适用于野外样本。因此,本研究开启了将野外大规模疾病监测与对基因组模型海藻——硅藻(Ectocarpus siliculosus)进行实验室控制实验相结合的前景,以增进我们对褐藻疾病的理解。

相似文献

7
10
Chemically-Mediated Interactions Between Macroalgae, Their Fungal Endophytes, and Protistan Pathogens.
Front Microbiol. 2018 Dec 21;9:3161. doi: 10.3389/fmicb.2018.03161. eCollection 2018.

引用本文的文献

1
Cell death is a conserved innate disease resistance response of brown algae against the oomycete .
iScience. 2025 Jul 24;28(9):113195. doi: 10.1016/j.isci.2025.113195. eCollection 2025 Sep 19.
3
Eight new species from marine and brackish-water ecosystems in Portugal and an updated phylogeny for the genus.
Persoonia. 2022 Jul 12;48:54-90. doi: 10.3767/persoonia.2023.48.02. Epub 2022 Mar 20.
4
: a new species of from Iceland, and report of a co-cultivation system for studying oomycete-diatom interactions.
Fungal Syst Evol. 2022 Dec;10:169-175. doi: 10.3114/fuse.2022.10.07. Epub 2022 Dec 5.
6
, a parasite of green algae, is probably conspecific with , a parasite of red algae.
Fungal Syst Evol. 2021 Jun;7:223-231. doi: 10.3114/fuse.2021.07.11. Epub 2021 Mar 5.
7
., a cultivable holocarpic parasitoid of the early-diverging .
Fungal Syst Evol. 2020 Dec;6:129-137. doi: 10.3114/fuse.2020.06.07. Epub 2020 Apr 16.
8
A glimpse into the biogeography, seasonality, and ecological functions of arctic marine .
IMA Fungus. 2019 Jun 20;10:6. doi: 10.1186/s43008-019-0006-6. eCollection 2019.

本文引用的文献

2
Global trends in emerging infectious diseases.
Nature. 2008 Feb 21;451(7181):990-3. doi: 10.1038/nature06536.
4
Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research.
New Phytol. 2008;177(2):319-332. doi: 10.1111/j.1469-8137.2007.02304.x.
5
Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef.
Science. 1994 Sep 9;265(5178):1547-51. doi: 10.1126/science.265.5178.1547.
6
Natural variation in innate immunity of a pioneer species.
Curr Opin Plant Biol. 2007 Aug;10(4):415-24. doi: 10.1016/j.pbi.2007.05.003. Epub 2007 Jul 12.
7
The Culture Collection of Algae and Protozoa (CCAP): a biological resource for protistan genomics.
Gene. 2007 Dec 30;406(1-2):51-7. doi: 10.1016/j.gene.2007.05.018. Epub 2007 Jun 7.
8
Rapid evolution and ecological host-parasite dynamics.
Ecol Lett. 2007 Jan;10(1):44-53. doi: 10.1111/j.1461-0248.2006.00995.x.
9
Molecular dynamics of Emiliania huxleyi and cooccurring viruses during two separate mesocosm studies.
Appl Environ Microbiol. 2007 Jan;73(2):554-62. doi: 10.1128/AEM.00864-06. Epub 2006 Nov 10.
10
Viruses in the sea.
Nature. 2005 Sep 15;437(7057):356-61. doi: 10.1038/nature04160.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验