Suppr超能文献

定义TRiC/CCT相互作用组可将伴侣蛋白功能与具有复杂拓扑结构的新合成蛋白质的稳定性联系起来。

Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies.

作者信息

Yam Alice Y, Xia Yu, Lin Hen-Tzu Jill, Burlingame Alma, Gerstein Mark, Frydman Judith

机构信息

Department of Biology and BioX Program, E200A James Clark Center, 318 Campus Drive, Stanford University, Stanford, California 94043, USA.

出版信息

Nat Struct Mol Biol. 2008 Dec;15(12):1255-62. doi: 10.1038/nsmb.1515. Epub 2008 Nov 16.

Abstract

Folding within the crowded cellular milieu often requires assistance from molecular chaperones that prevent inappropriate interactions leading to aggregation and toxicity. The contribution of individual chaperones to folding the proteome remains elusive. Here we demonstrate that the eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) has broad binding specificity in vitro, similar to the prokaryotic chaperonin GroEL. However, in vivo, TRiC substrate selection is not based solely on intrinsic determinants; instead, specificity is dictated by factors present during protein biogenesis. The identification of cellular substrates revealed that TRiC interacts with folding intermediates of a subset of structurally and functionally diverse polypeptides. Bioinformatics analysis revealed an enrichment in multidomain proteins and regions of beta-strand propensity that are predicted to be slow folding and aggregation prone. Thus, TRiC may have evolved to protect complex protein topologies within its central cavity during biosynthesis and folding.

摘要

在拥挤的细胞环境中进行折叠通常需要分子伴侣的协助,这些分子伴侣可防止导致聚集和毒性的不适当相互作用。单个伴侣蛋白对蛋白质组折叠的贡献仍不清楚。在这里,我们证明真核伴侣蛋白TRiC/CCT(TCP1环复合物或含TCP1的伴侣蛋白)在体外具有广泛的结合特异性,类似于原核伴侣蛋白GroEL。然而,在体内,TRiC底物选择并非仅基于内在决定因素;相反,特异性由蛋白质生物合成过程中存在的因素决定。细胞底物的鉴定表明,TRiC与结构和功能多样的多肽亚群的折叠中间体相互作用。生物信息学分析显示,多结构域蛋白以及预测为折叠缓慢且易于聚集的β链倾向区域富集。因此,TRiC可能已经进化,以在生物合成和折叠过程中保护其中心腔内的复杂蛋白质拓扑结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4af/2658641/90a51e1b88f0/nihms74470f1.jpg

相似文献

1
Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies.
Nat Struct Mol Biol. 2008 Dec;15(12):1255-62. doi: 10.1038/nsmb.1515. Epub 2008 Nov 16.
2
Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8360-5. doi: 10.1073/pnas.0600195103. Epub 2006 May 22.
4
The CCT/TRiC chaperonin is required for maturation of sphingosine kinase 1.
Int J Biochem Cell Biol. 2009 Apr;41(4):822-7. doi: 10.1016/j.biocel.2008.08.012. Epub 2008 Aug 14.
6
Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT.
Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21208-15. doi: 10.1073/pnas.1218836109. Epub 2012 Nov 28.
7
The Mechanism and Function of Group II Chaperonins.
J Mol Biol. 2015 Sep 11;427(18):2919-30. doi: 10.1016/j.jmb.2015.04.013. Epub 2015 Apr 30.
9
4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement.
Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4967-72. doi: 10.1073/pnas.0913774107. Epub 2010 Mar 1.

引用本文的文献

1
Visualizing dynamic tubulin folding in chaperonin TRiC from nonnative nucleus to final native state.
Nat Commun. 2025 Aug 23;16(1):7878. doi: 10.1038/s41467-025-63016-x.
2
Role of the chaperonin TCP-1 ring complex in protein aggregation and neurodegeneration.
Front Mol Neurosci. 2025 Jul 7;18:1617771. doi: 10.3389/fnmol.2025.1617771. eCollection 2025.
3
Inhibition of CCT5-mediated asparagine biosynthesis and anti-PD-L1 produce synergistic antitumor effects in colorectal cancer.
Acta Pharm Sin B. 2025 May;15(5):2480-2497. doi: 10.1016/j.apsb.2025.03.026. Epub 2025 Mar 14.
6
The BBS/CCT chaperonin complex ensures the localization of the adhesion G protein-coupled receptor ADGRV1 to the base of primary cilia.
Front Cell Dev Biol. 2025 Mar 4;13:1520723. doi: 10.3389/fcell.2025.1520723. eCollection 2025.
8
Protein folding by the CCT/TRiC chaperone complex.
Curr Opin Struct Biol. 2025 Apr;91:102999. doi: 10.1016/j.sbi.2025.102999. Epub 2025 Feb 5.
9
In situ analysis reveals the TRiC duty cycle and PDCD5 as an open-state cofactor.
Nature. 2025 Jan;637(8047):983-990. doi: 10.1038/s41586-024-08321-z. Epub 2024 Dec 11.

本文引用的文献

1
Two families of chaperonin: physiology and mechanism.
Annu Rev Cell Dev Biol. 2007;23:115-45. doi: 10.1146/annurev.cellbio.23.090506.123555.
2
Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins.
Nat Struct Mol Biol. 2007 May;14(5):432-40. doi: 10.1038/nsmb1236. Epub 2007 Apr 29.
3
Global aggregation of newly translated proteins in an Escherichia coli strain deficient of the chaperonin GroEL.
Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15800-5. doi: 10.1073/pnas.0607534103. Epub 2006 Oct 16.
4
The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions.
Nat Cell Biol. 2006 Oct;8(10):1155-62. doi: 10.1038/ncb1477. Epub 2006 Sep 17.
5
Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state.
Nat Cell Biol. 2006 Oct;8(10):1163-70. doi: 10.1038/ncb1478. Epub 2006 Sep 17.
6
Chaperonin TRiC promotes the assembly of polyQ expansion proteins into nontoxic oligomers.
Mol Cell. 2006 Sep 15;23(6):887-97. doi: 10.1016/j.molcel.2006.08.017.
7
Cytosolic chaperonin protects folding intermediates of Gbeta from aggregation by recognizing hydrophobic beta-strands.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8360-5. doi: 10.1073/pnas.0600195103. Epub 2006 May 22.
8
Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells.
Cell. 2006 Jan 13;124(1):75-88. doi: 10.1016/j.cell.2005.11.039.
10
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli.
Cell. 2005 Jul 29;122(2):209-20. doi: 10.1016/j.cell.2005.05.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验