Yam Alice Y, Xia Yu, Lin Hen-Tzu Jill, Burlingame Alma, Gerstein Mark, Frydman Judith
Department of Biology and BioX Program, E200A James Clark Center, 318 Campus Drive, Stanford University, Stanford, California 94043, USA.
Nat Struct Mol Biol. 2008 Dec;15(12):1255-62. doi: 10.1038/nsmb.1515. Epub 2008 Nov 16.
Folding within the crowded cellular milieu often requires assistance from molecular chaperones that prevent inappropriate interactions leading to aggregation and toxicity. The contribution of individual chaperones to folding the proteome remains elusive. Here we demonstrate that the eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) has broad binding specificity in vitro, similar to the prokaryotic chaperonin GroEL. However, in vivo, TRiC substrate selection is not based solely on intrinsic determinants; instead, specificity is dictated by factors present during protein biogenesis. The identification of cellular substrates revealed that TRiC interacts with folding intermediates of a subset of structurally and functionally diverse polypeptides. Bioinformatics analysis revealed an enrichment in multidomain proteins and regions of beta-strand propensity that are predicted to be slow folding and aggregation prone. Thus, TRiC may have evolved to protect complex protein topologies within its central cavity during biosynthesis and folding.
在拥挤的细胞环境中进行折叠通常需要分子伴侣的协助,这些分子伴侣可防止导致聚集和毒性的不适当相互作用。单个伴侣蛋白对蛋白质组折叠的贡献仍不清楚。在这里,我们证明真核伴侣蛋白TRiC/CCT(TCP1环复合物或含TCP1的伴侣蛋白)在体外具有广泛的结合特异性,类似于原核伴侣蛋白GroEL。然而,在体内,TRiC底物选择并非仅基于内在决定因素;相反,特异性由蛋白质生物合成过程中存在的因素决定。细胞底物的鉴定表明,TRiC与结构和功能多样的多肽亚群的折叠中间体相互作用。生物信息学分析显示,多结构域蛋白以及预测为折叠缓慢且易于聚集的β链倾向区域富集。因此,TRiC可能已经进化,以在生物合成和折叠过程中保护其中心腔内的复杂蛋白质拓扑结构。