Kahlert M, Hofmann K P
Institut für Biophysik und Strahlenbiologie, Albert-Ludwigs-Universität, Freiburg, Federal Republic of Germany.
Biophys J. 1991 Feb;59(2):375-86. doi: 10.1016/S0006-3495(91)82231-7.
A model of transducin activation is constructed from its partial reactions (formation of metarhodopsin II, association, and dissociation of the rhodopsin-transducin complex). The kinetic equations of the model are solved both numerically and, for small photoactivation, analytically. From data on the partial reactions in vitro, rate and activation energy profile of amplified transducin turnover are modeled and compared with measured light-scattering signals of transducin activation in intact retinal rods. The data leave one free parameter, the rate of association between transducin and rhodopsin. Best fit is achieved for an activation energy of 35 kJ/mol, indicating lateral membrane diffusion of the proteins as its main determinant. The absolute value of the association rate is discussed in terms of the success of collisions to form the catalytic complex. It is greater than 30% for the intact retina and 10 times lower after permeabilization with staphylococcus aureus alpha-toxin. Dissociation rates for micromolar guanosinetriphosphale (GTP) (Kohl, B., and K. P. Hofmann, 1987. Biophys. J. 52:271-277) must be extrapolated linearly up to the millimolar range to explain the rapid transducin turnover in situ. This is interpreted by an unstable rhodopsin-transducin-GTP transient state. At the time of maximal turnover after a flash, the rate of activation is determined as 30, 120, 800, 2,500, and 4,000 activated transducins per photoactivated rhodopsin and second at 5, 10, 20, 30, 37 degrees C, respectively.
基于转导蛋白的部分反应(视紫红质II的形成、视紫红质-转导蛋白复合物的缔合和解离)构建了一个转导蛋白激活模型。该模型的动力学方程通过数值求解,对于小光激活情况还进行了解析求解。根据体外部分反应的数据,对放大的转导蛋白周转的速率和活化能分布进行建模,并与完整视网膜杆中转导蛋白激活的测量光散射信号进行比较。数据留下一个自由参数,即转导蛋白与视紫红质之间的缔合速率。对于35 kJ/mol的活化能实现了最佳拟合,表明蛋白质的侧向膜扩散是其主要决定因素。根据形成催化复合物的碰撞成功率讨论了缔合速率的绝对值。完整视网膜的缔合速率大于30%,用金黄色葡萄球菌α-毒素通透后降低10倍。对于微摩尔鸟苷三磷酸(GTP)(科尔,B.,和K.P.霍夫曼,1987年。《生物物理杂志》52:271 - 277)的解离速率必须线性外推至毫摩尔范围,以解释原位快速的转导蛋白周转。这被解释为视紫红质-转导蛋白-GTP瞬态不稳定。在闪光后最大周转时,在5、10、20、30、37摄氏度下,每光激活的视紫红质每秒激活的转导蛋白速率分别确定为30、120、800、2500和4000个。