Benítez Mariana, Espinosa-Soto Carlos, Padilla-Longoria Pablo, Alvarez-Buylla Elena R
Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria 3er Circuito Exterior, Junto Jardín Botánico Exterior, Coyoacán 04510, DF, Mexico.
BMC Syst Biol. 2008 Nov 17;2:98. doi: 10.1186/1752-0509-2-98.
Dynamical models are instrumental for exploring the way information required to generate robust developmental patterns arises from complex interactions among genetic and non-genetic factors. We address this fundamental issue of developmental biology studying the leaf and root epidermis of Arabidopsis. We propose an experimentally-grounded model of gene regulatory networks (GRNs) that are coupled by protein diffusion and comprise a meta-GRN implemented on cellularised domains.
Steady states of the meta-GRN model correspond to gene expression profiles typical of hair and non-hair epidermal cells. The simulations also render spatial patterns that match the cellular arrangements observed in root and leaf epidermis. As in actual plants, such patterns are robust in the face of diverse perturbations. We validated the model by checking that it also reproduced the patterns of reported mutants. The meta-GRN model shows that interlinked sub-networks contribute redundantly to the formation of robust hair patterns and permits to advance novel and testable predictions regarding the effect of cell shape, signalling pathways and additional gene interactions affecting spatial cell-patterning.
The spatial meta-GRN model integrates available experimental data and contributes to further understanding of the Arabidopsis epidermal system. It also provides a systems biology framework to explore the interplay among sub-networks of a GRN, cell-to-cell communication, cell shape and domain traits, which could help understanding of general aspects of patterning processes. For instance, our model suggests that the information needed for cell fate determination emerges from dynamic processes that depend upon molecular components inside and outside differentiating cells, suggesting that the classical distinction of lineage versus positional cell differentiation may be instrumental but rather artificial. It also suggests that interlinkage of nonlinear and redundant sub-networks in larger networks is important for pattern robustness. Pursuing dynamic analyses of larger (genomic) coupled networks is still not possible. A repertoire of well-characterised regulatory modules, like the one presented here, will, however, help to uncover general principles of the patterning-associated networks, as well as the peculiarities that originate diversity.
动力学模型有助于探索生成稳健发育模式所需的信息是如何从遗传和非遗传因素之间的复杂相互作用中产生的。我们通过研究拟南芥的叶和根表皮来解决发育生物学的这一基本问题。我们提出了一个基于实验的基因调控网络(GRN)模型,该模型通过蛋白质扩散耦合,并包含在细胞化区域上实现的元基因调控网络。
元基因调控网络模型的稳态对应于毛状体和非毛状体表皮细胞典型的基因表达谱。模拟还生成了与根和叶表皮中观察到的细胞排列相匹配的空间模式。与实际植物一样,这些模式在面对各种扰动时具有稳健性。我们通过检查该模型是否也能重现已报道突变体的模式来验证模型。元基因调控网络模型表明,相互关联的子网络对稳健的毛状体模式的形成有冗余贡献,并允许提出关于细胞形状、信号通路和影响空间细胞模式的其他基因相互作用的新颖且可测试的预测。
空间元基因调控网络模型整合了现有的实验数据,有助于进一步理解拟南芥表皮系统。它还提供了一个系统生物学框架,以探索基因调控网络子网络之间的相互作用、细胞间通讯、细胞形状和区域特征,这有助于理解模式形成过程的一般方面。例如,我们的模型表明,细胞命运决定所需的信息来自依赖于分化细胞内外分子成分的动态过程,这表明谱系与位置细胞分化的经典区分可能有用但相当人为。它还表明,较大网络中非线性和冗余子网络的相互连接对于模式稳健性很重要。然而,对更大(基因组)耦合网络进行动态分析仍然不可能。像这里展示的这样一组特征明确的调控模块将有助于揭示模式形成相关网络的一般原则以及产生多样性的特性。