Suppr超能文献

利用前瞻性随机试验数据对自动化安全监测系统进行验证。

Validation of an automated safety surveillance system with prospective, randomized trial data.

作者信息

Matheny Michael E, Morrow David A, Ohno-Machado Lucila, Cannon Christopher P, Sabatine Marc S, Resnic Frederic S

机构信息

Department of Radiology, Division of General Medicine, Brigham & Women's Hospital, Boston, MA, USA.

出版信息

Med Decis Making. 2009 Mar-Apr;29(2):247-56. doi: 10.1177/0272989X08327110. Epub 2008 Nov 17.

Abstract

OBJECTIVE

We sought to validate 3 methods for automated safety monitoring by evaluating clinical trials with elevated adverse events.

METHODS

An automated outcomes surveillance system was used to retrospectively analyze data from 2 randomized, TIMI multicenter trials. Trial A was stopped early due to elevated 30-day mortality rates in the intervention arm. Trial B was not stopped early, but there was transient concern regarding 30-day intracranial hemorrhage rates. We compared statistical process control (SPC), logistic regression risk adjusted SPC (LR-SPC), and Bayesian updating statistic (BUS) methods with a standard prospective 2-arm event rate analysis. Each method compares observed event rates to alerting boundaries established with previously collected data. In this evaluation, the control arms approximated prior data, and the intervention arms approximated the observed data.

RESULTS

Trial A experienced elevated 30-day mortality rates beginning 7 months after the start of the trial and continuing until termination at month 14. Trial B did not experience elevated major bleeding rates. Combining the alerting performance of each method across both trials resulted in sensitivities and specificities of 100% and 85% for SPC, 0% and 100% for BUS, and 100% and 93% for both LR-SPC models, respectively.

CONCLUSION

Both SPC and LR-SPC methods correctly identified the majority of months during which the cumulative event rates were elevated in trial A but were susceptible to false positive alerts in trial B. The BUS method did not result in any alerts in either trial and requires revision.

摘要

目的

我们试图通过评估不良事件发生率升高的临床试验来验证三种自动安全监测方法。

方法

使用自动结果监测系统对两项随机、TIMI多中心试验的数据进行回顾性分析。试验A因干预组30天死亡率升高而提前终止。试验B未提前终止,但曾对30天颅内出血率短暂担忧。我们将统计过程控制(SPC)、逻辑回归风险调整统计过程控制(LR-SPC)和贝叶斯更新统计(BUS)方法与标准的前瞻性双臂事件率分析进行比较。每种方法将观察到的事件率与根据先前收集的数据确定的警报界限进行比较。在本评估中,对照组近似于先前数据,干预组近似于观察到的数据。

结果

试验A在试验开始7个月后30天死亡率开始升高,并持续到第14个月终止。试验B未出现主要出血率升高情况。综合两项试验中每种方法的警报性能,SPC的敏感性和特异性分别为100%和85%,BUS为0%和100%,两种LR-SPC模型均为100%和93%。

结论

SPC和LR-SPC方法均正确识别了试验A中累积事件率升高的大部分月份,但在试验B中易出现假阳性警报。BUS方法在两项试验中均未发出任何警报,需要修订。

相似文献

3
Monitoring device safety in interventional cardiology.介入心脏病学中的监测设备安全性
J Am Med Inform Assoc. 2006 Mar-Apr;13(2):180-7. doi: 10.1197/jamia.M1908. Epub 2005 Dec 15.
4

引用本文的文献

2
Impact of early surveillance on safety signal identification in the CathPCI DELTA study.早期监测对CathPCI DELTA研究中安全信号识别的影响。
BMJ Surg Interv Health Technol. 2020 Nov 11;2(1):e000047. doi: 10.1136/bmjsit-2020-000047. eCollection 2020.
5
7
9
iDASH: integrating data for analysis, anonymization, and sharing.iDASH:用于分析、匿名化和共享的数据集成。
J Am Med Inform Assoc. 2012 Mar-Apr;19(2):196-201. doi: 10.1136/amiajnl-2011-000538. Epub 2011 Nov 10.

本文引用的文献

3
Real-time estimates in early detection of SARS.SARS早期检测中的实时估计。
Emerg Infect Dis. 2006 Jan;12(1):110-3. doi: 10.3201/eid1201.050593.
4
Monitoring device safety in interventional cardiology.介入心脏病学中的监测设备安全性
J Am Med Inform Assoc. 2006 Mar-Apr;13(2):180-7. doi: 10.1197/jamia.M1908. Epub 2005 Dec 15.
8
Postmarketing surveillance--lack of vigilance, lack of trust.上市后监测——警惕性不足,信任缺失。
JAMA. 2004 Dec 1;292(21):2647-50. doi: 10.1001/jama.292.21.2647. Epub 2004 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验