Suppr超能文献

The adenine nucleotide-binding site on yeast 3-phosphoglycerate kinase. Affinity labeling of Lys-131 by pyridoxal 5'-diphospho-5'-adenosine.

作者信息

LaDine J R, Cross R L

机构信息

Department of Biochemistry and Molecular Biology, State University of New York, Syracuse 13210.

出版信息

J Biol Chem. 1991 Apr 15;266(11):7194-8.

PMID:1901864
Abstract

The adenine nucleotide analog [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP) is a potent and highly specific inactivator of yeast 3-phosphoglycerate kinase. Supportive evidence includes the finding that 1) during a 10-min incubation, half-maximal inactivation is given by 10 microM PLP-AMP, 2) covalent incorporation of 1.2 mol of PLP-AMP/mol of enzyme is sufficient to give complete inactivation, and 3) MgATP gives near complete protection against modification and inactivation by PLP-AMP. Following reaction with PLP-AMP and reduction with NaBH4 to form a stable adduct, the enzyme was digested with endoproteinase Lys-C and peptides were separated by reversed-phase high-performance liquid chromatography. The single major labeled peptide was purified and sequenced, and the modified residue was identified as Lys-131. The crystal structure of enzyme in the open conformation shows Lys-131 to reside within a loop of flexible random coil positioned at the outer edge of the central binding cleft, approximately 2 nm from the surface of the cleft that comprises part of the MgATP-binding site (Watson, H. C., Walker, N. P. C., Shaw, P. J., Bryant, T. N., Wendell, P. L., Fothergill, L. A., Perkins, R. E., Conroy, S. C., Dobson, M. J., Tuite, M. F., Kingsman, A. J., and Kingsman, S. M. (1982) EMBO J. 1, 1635-1640). We conclude that the structural element containing Lys-131 undergoes substantial movement during the ligand-induced conformational change known to occur during formation of the ternary complex, resulting in the positioning of a basic residue near a negatively charged substrate. Since similar affinity-labeling results have been presented for hexokinase (Tamura, J. K., LaDine, J. R., and Cross, R. L. (1988) J. Biol. Chem. 263, 7907-7912), we further suggest that movement of positive charge into the central cleft may be a common step in the tight binding of nucleotides by bilobal kinases.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验