Oberhauser Vitus, Voolstra Olaf, Bangert Annette, von Lintig Johannes, Vogt Klaus
Albert-Ludwigs Universität Freiburg, Institut für Biologie I, Neurobiologie und Tiephysiologie, Hauptstrasse 1, D-79104 Freiburg, Germany.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):19000-5. doi: 10.1073/pnas.0807805105. Epub 2008 Nov 19.
In animals, successful production of the visual chromophore (11-cis-retinal or derivatives thereof such as 11-cis-3-hydroxy-retinal) is essential for photoreceptor cell function and survival. These carotenoid-derived compounds must combine with a protein moiety (the opsin) to establish functional visual pigments. Evidence from cell culture systems has implicated that the retinal pigment epithelium protein of 65 kDa (RPE65) is the long-sought all-trans to 11-cis retinoid isomerase. RPE65 is structurally related to nonheme iron oxygenases that catalyze the conversion of carotenoids into retinoids. In vertebrate genomes, two carotenoid oxygenases and RPE65 are encoded, whereas in insect genomes only a single representative of this protein family, named NinaB (denoting neither inactivation nor afterpotential mutant B), is encoded. We here cloned and functionally characterized the ninaB gene from the great wax moth Galleria mellonella. We show that the recombinant purified enzyme combines isomerase and oxygenase (isomerooxygenase) activity in a single polypeptide. From kinetics and isomeric composition of cleavage products of asymmetrical carotenoid substrates, we propose a model for the spatial arrangement between substrate and enzyme. In Drosophila, we show that carotenoid-isomerooxygenase activity of NinaB is more generally found in insects, and we provide physiological evidence that carotenoids such as 11-cis-retinal can promote visual pigment biogenesis in the dark. Our study demonstrates that trans/cis isomerase activity can be intrinsic to this class of proteins and establishes these enzymes as key components for both invertebrate and vertebrate vision.
在动物体内,视觉发色团(11-顺式视黄醛或其衍生物,如11-顺式-3-羟基视黄醛)的成功合成对于光感受器细胞的功能和存活至关重要。这些类胡萝卜素衍生的化合物必须与蛋白质部分(视蛋白)结合才能形成功能性视觉色素。细胞培养系统的证据表明,65 kDa的视网膜色素上皮蛋白(RPE65)就是长期以来寻找的全反式到11-顺式视黄醛异构酶。RPE65在结构上与催化类胡萝卜素转化为视黄醛的非血红素铁加氧酶相关。在脊椎动物基因组中,编码了两种类胡萝卜素加氧酶和RPE65,而在昆虫基因组中,仅编码了该蛋白质家族的一个代表,称为NinaB(表示既非失活也非后电位突变体B)。我们在此克隆了大蜡螟Galleria mellonella的ninaB基因并对其进行了功能表征。我们表明,重组纯化的酶在单个多肽中兼具异构酶和加氧酶(异构加氧酶)活性。根据不对称类胡萝卜素底物裂解产物的动力学和异构体组成,我们提出了底物与酶之间空间排列的模型。在果蝇中,我们表明NinaB的类胡萝卜素异构加氧酶活性在昆虫中更为普遍,并且我们提供了生理学证据,证明11-顺式视黄醛等类胡萝卜素可以在黑暗中促进视觉色素的生物合成。我们的研究表明,反式/顺式异构酶活性可能是这类蛋白质所固有的,并将这些酶确立为无脊椎动物和脊椎动物视觉的关键组成部分。