Suppr超能文献

回归相对生存分析背景下缺失协变量数据的多重填补性能。

The performance of multiple imputation for missing covariate data within the context of regression relative survival analysis.

作者信息

Giorgi Roch, Belot Aurélien, Gaudart Jean, Launoy Guy

机构信息

Laboratoire d'Enseignement et de Recherche sur le Traitement de l'Information Médicale, EA 3283, Faculté de Médecine, Université de la Méditerranée, Marseille, France.

出版信息

Stat Med. 2008 Dec 30;27(30):6310-31. doi: 10.1002/sim.3476.

Abstract

Relative survival assesses the effects of prognostic factors on disease-specific mortality when the cause of death is uncertain or unavailable. It provides an estimate of patients' survival, allowing for the effects of other independent causes of death. Regression-based relative survival models are commonly used in population-based studies to model the effects of some prognostic factors and to estimate net survival. Most often, studies focus on routinely collected prognostic factors for which the proportion of missing values is usually low (around 5 per cent). However, in some cases, additional factors are collected with a greater proportion of missingness. In the present article, we systematically assess the performance of multiple imputation in regression analysis of relative survival through a series of simulation experiments. According to the assumptions concerning the missingness mechanism (completely at random, at random, and not at random) and the missingness pattern (monotone, non-monotone), several strategies were considered and compared: all cases analysis, complete cases analysis, missing data indicator analysis, and multiple imputation by chained equations (MICE) analysis. We showed that MICE performs well in estimating the hazard ratios and the baseline hazard function when the missing mechanism is missing at random (MAR) conditionally on the vital status. In the situations where the missing mechanism was not MAR conditionally on vital status, complete case behaves consistently. As illustration, we used data of the French Cancer Registries on relative survival of patients with colorectal cancer.

摘要

当死亡原因不确定或无法获取时,相对生存率用于评估预后因素对疾病特异性死亡率的影响。它提供了患者生存率的估计值,同时考虑了其他独立死亡原因的影响。基于回归的相对生存模型常用于基于人群的研究,以模拟某些预后因素的影响并估计净生存率。大多数情况下,研究关注常规收集的预后因素,其缺失值比例通常较低(约5%)。然而,在某些情况下,会收集更多存在较大比例缺失值的额外因素。在本文中,我们通过一系列模拟实验系统地评估了多重插补在相对生存回归分析中的性能。根据关于缺失机制(完全随机、随机和非随机)和缺失模式(单调、非单调)的假设,考虑并比较了几种策略:所有病例分析、完整病例分析、缺失数据指标分析和链式方程多重插补(MICE)分析。我们表明,当缺失机制在以生存状态为条件下是随机缺失(MAR)时,MICE在估计风险比和基线风险函数方面表现良好。在缺失机制在以生存状态为条件下不是MAR的情况下,完整病例的表现较为一致。作为示例,我们使用了法国癌症登记处关于结直肠癌患者相对生存的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验