Suppr超能文献

在估计预后因素对疾病特异性死亡率的影响时Cox模型与相对生存模型的比较:比例超额风险下的模拟研究

Comparison of Cox's and relative survival models when estimating the effects of prognostic factors on disease-specific mortality: a simulation study under proportional excess hazards.

作者信息

Le Teuff Gwenaël, Abrahamowicz Michal, Bolard Philippe, Quantin Catherine

机构信息

Department of Biostatistics and Medical Informatics, Centre Hospitalier Universitaire de Dijon, BP 77908, 21079 Dijon Cedex, France.

出版信息

Stat Med. 2005 Dec 30;24(24):3887-909. doi: 10.1002/sim.2392.

Abstract

In many prognostic studies focusing on mortality of persons affected by a particular disease, the cause of death of individual patients is not recorded. In such situations, the conventional survival analytical methods, such as the Cox's proportional hazards regression model, do not allow to discriminate the effects of prognostic factors on disease-specific mortality from their effects on all-causes mortality. In the last decade, the relative survival approach has been proposed to deal with the analyses involving population-based cancer registries, where the problem of missing information on the cause of death is very common. However, some questions regarding the ability of the relative survival methods to accurately discriminate between the two sources of mortality remain open. In order to systematically assess the performance of the relative survival model proposed by Esteve et al., and to quantify its potential advantages over the Cox's model analyses, we carried out a series of simulation experiments, based on the population-based colon cancer registry in the French region of Burgundy. Simulations showed a systematic bias induced by the 'crude' conventional Cox's model analyses when individual causes of death are unknown. In simulations where only about 10 per cent of patients died of causes other than colon cancer, the Cox's model over-estimated the effects of male gender and oldest age category by about 17 and 13 per cent, respectively, with the coverage rate of the 95 per cent CI for the latter estimate as low as 65 per cent. In contrast, the effect of higher cancer stages was under-estimated by 8-28 per cent. In contrast to crude survival, relative survival model largely reduced such problems and handled well even such challenging tasks as separating the opposite effects of the same variable on cancer-related versus other-causes mortality. Specifically, in all the cases discussed above, the relative bias in the estimates from the Esteve et al.'s model was always below 10 per cent, with the coverage rates above 81 per cent.

摘要

在许多针对特定疾病患者死亡率的预后研究中,并未记录个体患者的死亡原因。在这种情况下,传统的生存分析方法,如Cox比例风险回归模型,无法区分预后因素对疾病特异性死亡率的影响和对全因死亡率的影响。在过去十年中,提出了相对生存方法来处理涉及基于人群的癌症登记的分析,在这种分析中,死亡原因信息缺失的问题非常普遍。然而,关于相对生存方法准确区分两种死亡来源的能力的一些问题仍然没有解决。为了系统地评估Esteve等人提出的相对生存模型的性能,并量化其相对于Cox模型分析的潜在优势,我们基于法国勃艮第地区的基于人群的结肠癌登记进行了一系列模拟实验。模拟结果表明,当个体死亡原因未知时,“原始”的传统Cox模型分析会产生系统性偏差。在仅约10%的患者死于结肠癌以外原因的模拟中,Cox模型分别高估了男性性别和最高年龄组的影响约17%和13%,后者估计的95%置信区间的覆盖率低至65%。相比之下,较高癌症分期的影响被低估了8%-28%。与原始生存率相比,相对生存模型在很大程度上减少了此类问题,并且即使在区分同一变量对癌症相关死亡率和其他原因死亡率的相反影响等具有挑战性的任务中也能很好地处理。具体而言,在上述所有情况下,Esteve等人模型估计的相对偏差始终低于10%,覆盖率高于81%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验