Rogov Vladimir V, Schmöe Kerstin, Löhr Fank, Rogova Natalia Yu, Bernhard Frank, Dötsch Volker
Institute of Biophysical Chemistry and Centre for Biomolecular Magnetic Resonance, Goethe University, Frankfurt, Germany.
Biochem Soc Trans. 2008 Dec;36(Pt 6):1427-32. doi: 10.1042/BST0361427.
The Rcs (regulator of capsule synthesis) signalling complex comprises the membrane-associated hybrid sensor kinases RcsC and RcsD, the transcriptional regulator RcsB and the two co-inducers RcsA and RcsF. Acting as a global regulatory network, the Rcs phosphorelay controls multiple cellular pathways including capsule synthesis, cell division, motility, biofilm formation and virulence mechanisms. Signal-dependent communication of the individual Rcs domains showing histidine kinase, phosphoreceiver, phosphoryl transfer and DNA-binding activities is characteristic and essential for the modulation of signal transfer. We have analysed the structures of core elements of the Rcs network including the RcsC-PR (phosphoreceiver domain of RcsC) and the RcsD-HPt (histidine phosphotransfer domain of RcsD), and we have started to characterize the dynamics and recognition mechanisms of the proteins. RcsC-PR represents a typical CheY-like alpha/beta/alpha sandwich fold and it shows a large conformational flexibility near the active-site residue Asp(875). NMR analysis revealed that RcsC-PR is able to adopt preferred conformations upon Mg(2+) co-ordination, BeF(3)(-) activation, phosphate binding and RcsD-HPt recognition. In contrast, the alpha-helical structure of RcsD-HPt is conformationally stable and contains a recognition area in close vicinity to the active-site His(842) residue. Our studies indicate the importance of protein dynamics and conformational exchange for the differential response to the variety of signals perceived by complex regulatory networks.
Rcs(荚膜合成调节因子)信号复合物由膜相关的杂合传感器激酶RcsC和RcsD、转录调节因子RcsB以及两个共诱导因子RcsA和RcsF组成。作为一个全局调节网络,Rcs磷酸化信号转导途径控制多种细胞途径,包括荚膜合成、细胞分裂、运动性、生物膜形成和毒力机制。显示组氨酸激酶、磷酸受体、磷酸转移和DNA结合活性的各个Rcs结构域的信号依赖性通讯具有特征性,并且对于信号传递的调节至关重要。我们分析了Rcs网络核心元件的结构,包括RcsC-PR(RcsC的磷酸受体结构域)和RcsD-HPt(RcsD的组氨酸磷酸转移结构域),并且我们已经开始表征这些蛋白质的动力学和识别机制。RcsC-PR代表典型的CheY样α/β/α三明治折叠,并且在活性位点残基Asp(875)附近显示出较大的构象灵活性。核磁共振分析表明,RcsC-PR在Mg(2+)配位、BeF(3)(-)激活、磷酸盐结合和RcsD-HPt识别后能够采用优选构象。相比之下,RcsD-HPt的α螺旋结构在构象上是稳定的,并且在靠近活性位点His(842)残基处包含一个识别区域。我们的研究表明蛋白质动力学和构象交换对于复杂调节网络感知的各种信号的差异响应的重要性。