Montealegre F
Department of Biological Sciences, University of Bristol, Bristol, UK.
J Evol Biol. 2009 Feb;22(2):355-66. doi: 10.1111/j.1420-9101.2008.01652.x. Epub 2008 Nov 15.
Male katydids (Orthoptera: Tettigoniidae) produce mating calls by rubbing the wings together, using specialized structures in their forewings (stridulatory file, scraper and mirror). A large proportion of species (ca. 66%) reported in the literature produces ultrasonic signals as principal output. Relationships among body size, generator structures and the acoustic parameters carrier frequency (f(c)) and pulse duration (p(d)), were studied in 58 tropical species that use pure-tone signals. A comparative analysis, based on the only available katydid phylogeny, shows how changes in sound generator form are related to changes in f(c) and p(d). Anatomical changes of the sound generator that might have been selected via f(c) and p(d) are mirror size, file length and number of file teeth. Selection for structures of the stridulatory apparatus that enhance wing mechanics via file-teeth and scraper morphology was crucial in the evolution of ultrasonic signals in the family Tettigoniidae.
雄性螽斯(直翅目:螽斯科)通过摩擦前翅,利用前翅上的特殊结构(摩擦发音锉、刮器和镜膜)发出求偶叫声。文献报道的大部分物种(约66%)主要发出超声波信号。对58种使用纯音信号的热带物种的体型、发声结构与声学参数载频(f(c))和脉冲持续时间(p(d))之间的关系进行了研究。基于现有的唯一螽斯系统发育进行的比较分析表明,发声器形态的变化与f(c)和p(d)的变化是如何相关的。可能通过f(c)和p(d)选择的发声器解剖学变化包括镜膜大小、摩擦发音锉长度和摩擦发音锉齿数量。通过摩擦发音锉齿和刮器形态增强翅膀力学性能的摩擦发声器官结构选择,在螽斯科超声波信号的进化中至关重要。