Zehl Martin, Rand Kasper D, Jensen Ole N, Jørgensen Thomas J D
Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
J Am Chem Soc. 2008 Dec 24;130(51):17453-9. doi: 10.1021/ja805573h.
Mass spectrometry is routinely applied to measure the incorporation of deuterium into proteins and peptides. The exchange of labile, heteroatom-bound hydrogens is mainly used to probe the structural dynamics of proteins in solution, e.g., by hydrogen-exchange mass spectrometry, but also to study the gas-phase structure and fragmentation mechanisms of polypeptide ions. Despite considerable effort in recent years, there is no widely established mass spectrometric method to localize the incorporated deuterium to single amino acid residues, and typically, only the overall deuterium content of peptides or proteins is obtained. The main reason for this is that CID and related techniques induce intramolecular migration of hydrogens ("hydrogen scrambling") upon vibrational excitation of the even-electron precursor ion, thus randomizing the positional distribution of the incorporated deuterium atoms before fragmentation. In contrast, decomposition of radical gas-phase peptide cations upon electron capture dissociation was recently demonstrated to proceed with a very low level of amide hydrogen scrambling. Employing model peptides developed to enable sensitive detection of hydrogen scrambling, we show in the present study that electron transfer dissociation in a 3D-quadrupole ion trap retains the site-specific solution-phase deuterium incorporation pattern and allows for localization of incorporated deuterium with single residue resolution. Furthermore, we exploit this finding to monitor how collisional activation induces proton mobility in a gaseous peptide ion at various levels of vibrational excitation.
质谱法通常用于测量氘在蛋白质和肽中的掺入情况。不稳定的、与杂原子结合的氢的交换主要用于探测溶液中蛋白质的结构动力学,例如通过氢交换质谱法,也用于研究多肽离子的气相结构和裂解机制。尽管近年来付出了巨大努力,但目前还没有广泛应用的质谱方法能够将掺入的氘定位到单个氨基酸残基上,通常只能获得肽或蛋白质的整体氘含量。主要原因是碰撞诱导解离(CID)及相关技术在偶电子前体离子振动激发时会引发氢的分子内迁移(“氢重排”),从而在裂解前使掺入的氘原子的位置分布随机化。相比之下,最近证明了电子捕获解离时自由基气相肽阳离子的分解过程中酰胺氢重排的程度非常低。利用为灵敏检测氢重排而开发的模型肽,我们在本研究中表明,三维四极杆离子阱中的电子转移解离保留了位点特异性的溶液相氘掺入模式,并能够以单残基分辨率定位掺入的氘。此外,我们利用这一发现来监测碰撞活化如何在不同振动激发水平下诱导气态肽离子中的质子迁移。