Kim Anthony J, Scarlett Raynaldo, Biancaniello Paul L, Sinno Talid, Crocker John C
Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, 220 S. 33rd St., Philadelphia, Pennsylvania 19104, USA.
Nat Mater. 2009 Jan;8(1):52-5. doi: 10.1038/nmat2338. Epub 2008 Nov 30.
DNA is the premier material for directing nanoscale self-assembly, having been used to produce many complex forms. Recently, DNA has been used to direct colloids and nanoparticles into novel crystalline structures, providing a potential route to fabricating meta-materials with unique optical properties. Although theory has sought the crystal phases that minimize total free energy, kinetic barriers remain essentially unstudied. Here we study interfacial equilibration in a DNA-directed microsphere self-assembly system and carry out corresponding detailed simulations. We introduce a single-nucleotide difference in the DNA strands on two mixed microsphere species, which generates a free-energy penalty for inserting 'impurity' spheres into a 'host' sphere crystal, resulting in a reproducible segregation coefficient. Comparison with simulation reveals that, under our experimental conditions, particles can equilibrate only with a few nearest neighbours before burial by the growth front, posing a potential impediment to the growth of complex structures.
DNA是用于指导纳米级自组装的首要材料,已被用于制造许多复杂的形式。最近,DNA已被用于将胶体和纳米颗粒引导成新型晶体结构,为制造具有独特光学特性的超材料提供了一条潜在途径。尽管理论上一直在寻找使总自由能最小化的晶相,但动力学障碍基本上仍未得到研究。在这里,我们研究了DNA指导的微球自组装系统中的界面平衡,并进行了相应的详细模拟。我们在两种混合微球物种的DNA链中引入了一个单核苷酸差异,这会产生将“杂质”球插入“主体”球晶体的自由能惩罚,从而产生可重复的分离系数。与模拟结果的比较表明,在我们的实验条件下,粒子在被生长前沿掩埋之前只能与少数几个最近邻达到平衡,这对复杂结构的生长构成了潜在障碍。