Kim Anthony J, Biancaniello Paul L, Crocker John C
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Langmuir. 2006 Feb 28;22(5):1991-2001. doi: 10.1021/la0528955.
DNA is a powerful and versatile tool for nanoscale self-assembly. Several researchers have assembled nanoparticles and colloids into a variety of structures using the sequence-specific binding properties of DNA. Until recently, however, all of the reported structures were disordered, even in systems where ordered colloidal crystals might be expected. We detail the experimental approach and surface preparation that we used to form the first DNA-mediated colloidal crystals, using 1 mum diameter polystyrene particles. Control experiments based on the depletion interaction clearly indicate that two standard methods for grafting biomolecules to colloidal particles (biotin/avidin and water-soluble carbodiimide) do not lead to ordered structures, even when blockers are employed that yield nominally stable, reversibly aggregating dispersions. In contrast, a swelling/deswelling-based method with poly(ethylene glycol) spacers resulted in particles that readily formed ordered crystals. The sequence specificity of the interaction is demonstrated by the crystal excluding particles bearing a noninteracting sequence. The temperature dependence of gelation and crystallization agree well with a simple thermodynamic model and a more detailed model of the effective colloidal pair interaction potential. We hypothesize that the surfaces yielded by the first two chemistries somehow hinder the particle-particle rolling required for annealing ordered structures, while at the same time not inducing a significant mean-force interaction that would alter the self-assembly phase diagram. Finally, we observe that particle crystallization kinetics become faster as the grafted-DNA density is increased, consistent with the particle-particle binding process being reaction, rather than diffusion limited.
DNA是用于纳米级自组装的一种强大且通用的工具。几位研究人员利用DNA的序列特异性结合特性,将纳米颗粒和胶体组装成了各种结构。然而,直到最近,所有报道的结构都是无序的,即使在可能预期会形成有序胶体晶体的系统中也是如此。我们详细介绍了我们用于形成首个DNA介导的胶体晶体的实验方法和表面处理方法,所使用的是直径为1微米的聚苯乙烯颗粒。基于耗尽相互作用的对照实验清楚地表明,将生物分子接枝到胶体颗粒上的两种标准方法(生物素/抗生物素蛋白和水溶性碳二亚胺)不会导致形成有序结构,即使使用了能产生名义上稳定、可逆聚集分散体的阻滞剂也是如此。相比之下,一种带有聚乙二醇间隔基的基于溶胀/去溶胀的方法得到的颗粒很容易形成有序晶体。晶体排斥带有非相互作用序列的颗粒,这证明了相互作用的序列特异性。凝胶化和结晶的温度依赖性与一个简单的热力学模型以及一个更详细的有效胶体对相互作用势模型非常吻合。我们推测,前两种化学方法产生的表面以某种方式阻碍了有序结构退火所需的颗粒间滚动,同时又不会诱导出会改变自组装相图的显著平均力相互作用。最后,我们观察到随着接枝DNA密度的增加,颗粒结晶动力学变得更快,这与颗粒间结合过程是反应控制而非扩散控制相一致。