Suppr超能文献

多组分生物活性玻璃及熔体的短程和中程结构:壳层模型与刚性离子势性能评估

Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials.

作者信息

Tilocca Antonio

机构信息

Department of Chemistry and Materials Simulation Laboratory, University College London, London WC 1H 0AJ, United Kingdom.

出版信息

J Chem Phys. 2008 Aug 28;129(8):084504. doi: 10.1063/1.2972146.

Abstract

Classical and ab initio molecular dynamics (MD) simulations have been carried out to investigate the effect of a different treatment of interatomic forces in modeling the structural properties of multicomponent glasses and melts. The simulated system is a soda-lime phosphosilicate composition with bioactive properties. Because the bioactivity of these materials depends on their medium-range structural features, such as the network connectivity and the Q(n) distribution (where Q(n) is a tetrahedral species bonded to n bridging oxygens) of silicon and phosphorus network formers, it is essential to assess whether, and up to what extent, classical potentials can reproduce these properties. The results indicate that the inclusion of the oxide ion polarization through a shell-model (SM) approach provides a more accurate representation of the medium-range structure compared to rigid-ion (RI) potentials. Insight into the causes of these improvements has been obtained by comparing the melt-and-quench transformation of a small sample of the same system, modeled using Car-Parrinello MD (CPMD), to the classical MD runs with SM and RI potentials. Both classical potentials show some limitations in reproducing the highly distorted structure of the melt denoted by the CPMD runs; however, the inclusion of polarization in the SM potential results in a better and qualitatively correct dynamical balance between the interconversion of Q(n) species during the cooling of the melt. This effect seems to reflect the slower decay of the fraction of structural defects during the cooling with the SM potential. Because these transient defects have a central role in mediating the Q(n) transformations, as previously proposed and confirmed by the current simulations, their presence in the melt is essential to produce an accurate final distribution of Q(n) species in the glass.

摘要

已进行经典分子动力学(MD)模拟和从头算分子动力学模拟,以研究在多组分玻璃和熔体结构性质建模中对原子间力进行不同处理的影响。模拟系统是具有生物活性的钠钙磷硅酸盐组合物。由于这些材料的生物活性取决于其介观结构特征,例如硅和磷网络形成体的网络连通性和Q(n)分布(其中Q(n)是与n个桥氧键合的四面体物种),因此评估经典势是否以及在多大程度上能够重现这些性质至关重要。结果表明,与刚性离子(RI)势相比,通过壳模型(SM)方法考虑氧离子极化能更准确地表示介观结构。通过比较使用Car-Parrinello MD(CPMD)对同一系统的小样本进行熔体淬火转变与使用SM和RI势的经典MD运行,深入了解了这些改进的原因。两种经典势在重现CPMD运行所表示的熔体高度扭曲结构方面都存在一些局限性;然而,在SM势中考虑极化会在熔体冷却过程中导致Q(n)物种相互转化之间实现更好且定性正确的动力学平衡。这种效应似乎反映了在使用SM势冷却过程中结构缺陷分数的衰减较慢。由于这些瞬态缺陷在介导Q(n)转变中起着核心作用,正如先前提出并经当前模拟证实的那样,它们在熔体中的存在对于在玻璃中产生准确的Q(n)物种最终分布至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验