Pedone Alfonso, Bertani Marco, Benassi Matilde
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.
J Chem Theory Comput. 2025 May 13;21(9):4769-4778. doi: 10.1021/acs.jctc.5c00218. Epub 2025 Apr 24.
Machine learning interatomic potentials (MLIPs) offer a promising alternative to traditional force fields and ab initio methods for simulating complex materials such as oxide glasses. In this work, we present the first evaluation of the pretrained MACE (Multi-ACE) model [D.P. Kovács et al., J. Chem. Phys. 159(2023), 044118] for silicate glasses, using sodium silicates as a test case. We compare its performance with a DeePMD-based MLIP specifically trained on sodium silicate compositions [M. Bertani et al., J. Chem. Theory Comput. 20(2024), 1358-1370] and assess their accuracy in reproducing structural and dynamical properties. Additionally, we investigate the role of dispersion interactions by incorporating the D3(BJ) correction in both models. Our results show that while MACE accurately reproduces neutron structure factors, pair distribution functions, and Si[Q] speciation, it performs slightly worst for elastic properties calculations. However, it is suitable for the simulations of sodium silicate glasses. The inclusion of dispersion interactions significantly improves the reproduction of density and elastic properties for both MLIPs, highlighting their critical role in glass modeling. These findings provide insight into the transferability of general MLIPs to disordered systems and emphasize the need for dispersion-aware training data sets in developing accurate force fields for oxide glasses.
机器学习原子间势(MLIPs)为模拟诸如氧化物玻璃等复杂材料提供了一种有前景的替代传统力场和从头算方法的方案。在这项工作中,我们以硅酸钠为测试案例,首次对预训练的用于硅酸盐玻璃的MACE(多ACE)模型[D.P. 科瓦奇等人,《化学物理杂志》159(2023),044118]进行评估。我们将其性能与专门针对硅酸钠成分训练的基于深度势能模型(DeePMD)的MLIP[M. 贝尔塔尼等人,《化学理论与计算杂志》20(2024),1358 - 1370]进行比较,并评估它们在再现结构和动力学性质方面的准确性。此外,我们通过在两个模型中纳入D3(BJ)校正来研究色散相互作用的作用。我们的结果表明,虽然MACE能准确再现中子结构因子、对分布函数和Si[Q]形态,但在弹性性质计算方面表现稍差。然而,它适用于硅酸钠玻璃的模拟。纳入色散相互作用显著改善了两个MLIP对密度和弹性性质的再现,突出了它们在玻璃建模中的关键作用。这些发现为通用MLIPs对无序系统的可转移性提供了见解,并强调了在为氧化物玻璃开发精确力场时需要考虑色散的训练数据集。