Stopkowicz Stella, Gauss Jürgen
Institut fur Physikalische Chemie, Universitat Mainz, D-55099 Mainz, Germany.
J Chem Phys. 2008 Oct 28;129(16):164119. doi: 10.1063/1.2998300.
Direct perturbation theory (DPT) is applied to compute relativistic corrections to electrical properties such as dipole moment, quadrupole moment, and electric-field gradient. The corrections are obtained as second derivatives of the energy and are given via method-independent expressions that involve the first derivative of the density matrix with respect to the relativistic perturbation as well as property integrals with additional momentum operators. Computational results obtained using Hartree-Fock (HF), second-order Moller-Plesset (MP2) perturbation theory, and the coupled-cluster singles and doubles approach augmented by a perturbative treatment of triple excitations are presented for the hydrogen halides HX with X=F, Cl, Br, (I, At) and the magnitude of relativistic effects, their basis-set dependence, and the limitations of DPT are discussed. We compare our results to those obtained using the second-order Douglas-Kroll method and benchmark them using four-component HF (Dirac-HF) and MP2 calculations. Relativistic effects are shown to be already important for elements of the third row (Na-Ar) when aiming at a high-accuracy quantum-chemical treatment. DPT provides reliable results for compounds containing elements up to the fourth period (K-Kr) and only breaks down when applied in lowest order to heavier elements. As a first application of the present DPT treatment for electrical properties, we report calculations for bromofluoromethane (CH(2)FBr) which was investigated using rotational spectroscopy by Cazzoli et al. [Mol. Phys. 106, 1181 (2008)] and for which consideration of relativistic effects turns out to be essential for good agreement between theory and experiment in the case of the bromine quadrupole-coupling constant.
直接微扰理论(DPT)被应用于计算电性质(如偶极矩、四极矩和电场梯度)的相对论修正。这些修正作为能量的二阶导数获得,并通过与方法无关的表达式给出,这些表达式涉及密度矩阵相对于相对论微扰的一阶导数以及带有附加动量算符的性质积分。给出了使用Hartree-Fock(HF)、二阶Moller-Plesset(MP2)微扰理论以及通过对三重激发的微扰处理增强的耦合簇单双激发方法,对卤化氢HX(X = F、Cl、Br、(I、At))的计算结果,并讨论了相对论效应的大小、它们对基组的依赖性以及DPT的局限性。我们将我们的结果与使用二阶Douglas-Kroll方法获得的结果进行比较,并使用四分量HF(Dirac-HF)和MP2计算对它们进行基准测试。当旨在进行高精度量子化学处理时,相对论效应对于第三周期(Na - Ar)的元素已经很重要。DPT为包含第四周期(K - Kr)元素的化合物提供可靠的结果,并且仅在以最低阶应用于更重元素时才失效。作为当前DPT处理电性质的首次应用,我们报告了对溴氟甲烷(CH(2)FBr)的计算,Cazzoli等人[《分子物理学》106, 1181 (2008)]使用旋转光谱对其进行了研究,并且在溴四极耦合常数的情况下,考虑相对论效应对于理论与实验之间的良好一致性至关重要。