Espinoza M I, Parer J T
Cardiovascular Research Institute, University of California, San Francisco 94143.
Am J Obstet Gynecol. 1991 Jun;164(6 Pt 1):1582-9; discussion 1589-91. doi: 10.1016/0002-9378(91)91440-8.
An examination of the cellular and molecular mechanisms of neuronal cell damage may lead to the design of pharmacologic interventions during presumed or actual fetal asphyxia. Hypoxia-ischemia in its severest form results in insufficient adenosine 5'-triphosphate production. The most important effect of this is failure of adenosine 5'-triphosphate-dependent membrane functions, which maintain ionic homeostasis, that is, ionic pumping. There is K+ efflux and Na+ influx across the cell membrane, depolarization of the cell membrane, opening of the voltage-dependent calcium channels, and entrance of Ca++ into the cell. Cytosolic Ca++ is also increased by Ca++ efflux from the mitochondria and the sarcoplasmic reticulum. Ca++ is a toxin in high cytosolic concentrations; it activates phospholipases A and C, which cause membrane breakdown and release of free fatty acids, including arachidonic acid. The membrane is damaged, lysis occurs, and the neuron dies. High cytosolic Ca++ also causes release of excitatory amino acids (especially glutamate), which overwhelm the suppressant neurotransmitters, causing seizures, increased metabolism, and aggravation of the insufficient adenosine 5'-triphosphate availability. Thromboxane A2 is generated from arachidonic acid, increasing smooth muscle tone and thereby worsening the ischemia. Cyclooxygenase activity also results in formation of oxygen-free radicals that contribute to cell membrane damage, lysis, and death. Possibilities for pharmacologic interventions include (1) calcium channel blockers and antagonists, (2) excitatory neurotransmitter blockers, (3) oxygen-free radical scavengers (e.g., superoxide dismutase), (4) cyclooxygenase or prostaglandin synthesis inhibitors, and (5) seizure suppressants (e.g., phenobarbital). Some of these treatments have been shown experimentally to limit neuronal death in the adult and fetus, and after more investigative work they may be applicable to clinical practice.
对神经元细胞损伤的细胞和分子机制进行研究,可能会促使人们在假定或实际发生胎儿窒息期间设计出药物干预措施。最严重形式的缺氧缺血会导致三磷酸腺苷(ATP)生成不足。其最重要的影响是依赖ATP的膜功能失效,而这种膜功能维持着离子稳态,即离子泵功能。钾离子(K⁺)外流,钠离子(Na⁺)内流,细胞膜去极化,电压依赖性钙通道开放,钙离子(Ca²⁺)进入细胞。线粒体和肌浆网释放的Ca²⁺也会使细胞溶质Ca²⁺增加。高细胞溶质浓度的Ca²⁺是一种毒素;它激活磷脂酶A和C,导致膜破裂并释放游离脂肪酸,包括花生四烯酸。细胞膜受损,细胞发生溶解,神经元死亡。高细胞溶质Ca²⁺还会导致兴奋性氨基酸(尤其是谷氨酸)释放,这些氨基酸会超过抑制性神经递质的作用,引发癫痫、代谢增加,并加剧ATP供应不足。血栓素A2由花生四烯酸生成,会增加平滑肌张力,从而使缺血情况恶化。环氧化酶活性还会导致氧自由基形成,进而造成细胞膜损伤、溶解和死亡。药物干预的可能性包括:(1)钙通道阻滞剂和拮抗剂;(2)兴奋性神经递质阻滞剂;(3)氧自由基清除剂(如超氧化物歧化酶);(4)环氧化酶或前列腺素合成抑制剂;(5)癫痫抑制剂(如苯巴比妥)。实验表明,其中一些治疗方法可限制成年动物和胎儿的神经元死亡,经过更多研究工作后,它们可能会应用于临床实践。