Mahura I S
A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev.
Fiziol Zh (1994). 2003;49(2):7-12.
Neuronal responses to hypoxia-ischemia can be acute or chronic. In the early stages neuronal responses to ischemia-hypoxia are dependent on the modulation of ion channels. Acute responses relay mainly on O2-regulated ion channels which mediate adaptive changes in neuron excitability. Energy failure, an early consequence of hypoxia-ischemia, causes disruption of ionic homeostasis and accumulation of extracellular neurotransmitters. NMDA and AMPA/kainate receptors and Ca2+ channels contribute to excitotoxic neuronal degeneration. Excitotoxicity leads to increased Ca2+ influx, which can activate cytotoxic intracellular pathways. Reactive oxygen species (oxygen free radicals) generated during ischemia-reperfusion contribute to the injury. Oxygen free-radicals serve as important signalling molecules that trigger inflammation and apoptosis. Excitatory amino acid-receptor antagonists and Ca2+ channels blockers can provide neuroprotection in experimental models of hypoxia-ischemia but disrupt normal brain function. Because of their relative lack of behavioral side-effects, voltage-dependent Na+ channels blockers may have advantage over other neuroprotective mechanisms. The blockade of voltage-gated Na+ channels reduces the excitability of neurons, Na+ influx and the accumulation of intracellular Na+. These improve the ionic homeostasis and cellular energy levels and prevent ischemia-hypoxia induced neuronal injury and neuronal damage mediated by Ca2+ overload.
神经元对缺氧缺血的反应可分为急性或慢性。在早期阶段,神经元对缺血缺氧的反应依赖于离子通道的调节。急性反应主要依赖于氧调节离子通道,这些通道介导神经元兴奋性的适应性变化。能量衰竭是缺氧缺血的早期后果,会导致离子稳态破坏和细胞外神经递质积累。NMDA和AMPA/海人藻酸受体以及Ca2+通道会导致兴奋性毒性神经元变性。兴奋性毒性会导致Ca2+内流增加,从而激活细胞毒性细胞内途径。缺血再灌注期间产生的活性氧(氧自由基)会导致损伤。氧自由基作为重要的信号分子,触发炎症和细胞凋亡。兴奋性氨基酸受体拮抗剂和Ca2+通道阻滞剂在缺氧缺血实验模型中可提供神经保护作用,但会破坏正常脑功能。由于它们相对缺乏行为副作用电压依赖性Na+通道阻滞剂可能比其他神经保护机制更具优势。电压门控Na+通道的阻断可降低神经元的兴奋性、Na+内流和细胞内Na+的积累。这些可改善离子稳态和细胞能量水平,并预防缺血缺氧诱导的神经元损伤以及由Ca2+过载介导的神经元损伤。