Suppr超能文献

土耳其儿童和青少年手臂脂肪区域的风险分析。

The risk analysis of arm fat area in Turkish children and adolescents.

作者信息

Cicek Betul, Ozturk Ahmet, Mazicioglu Mumtaz Mustafa, Elmali Ferhan, Turp Nezahat, Kurtoglu Selim

机构信息

Department of Nutrition and Dietetics, Ataturk Health School, Erciyes University, Kayseri, Turkey.

出版信息

Ann Hum Biol. 2009 Jan-Feb;36(1):28-37. doi: 10.1080/03014460802537690.

Abstract

AIM

The study examined the risk factors associated with arm fat area (AFA) in Turkish children and adolescents. METHODS AND SAMPLES: This study was conducted with 5358 (2621 boys, 2737 girls) children and adolescents aged 6-17 years. Height, weight, waist circumference, mid-upper arm circumference and triceps skinfold thickness were measured. Body mass index, fat percentage, waist-to-height ratio, and AFA were calculated. A questionnaire was used to obtain socio-demographic data. For age- and gender-specific AFA, three groups were created by percentiles (underweight<5th, healthy weight> or =5-84.99th, overweight> or =85th percentiles). Multinomial logistic regression analyses were performed to determine the risk factors.

RESULTS

For the entire group, underweight and overweight prevalences were 4.7% and 14.9%, respectively. The body-size variables increased across age in Turkish boys and girls. The most significant risk factors for AFA were shown to be appetite, sleep duration, household income, and elevator use.

CONCLUSION

AFA can be a significant index, in combination with other well-known anthropometric indices, in determining nutritional status.

摘要

目的

本研究调查了土耳其儿童和青少年手臂脂肪面积(AFA)的相关风险因素。

方法与样本

本研究对5358名6至17岁的儿童和青少年(2621名男孩,2737名女孩)进行。测量了身高、体重、腰围、上臂中部周长和肱三头肌皮褶厚度。计算了体重指数、脂肪百分比、腰高比和AFA。使用问卷获取社会人口统计学数据。对于特定年龄和性别的AFA,按百分位数分为三组(体重过轻<第5百分位数,健康体重>或=第5 - 84.99百分位数,超重>或=第85百分位数)。进行多项逻辑回归分析以确定风险因素。

结果

在整个研究组中,体重过轻和超重的患病率分别为4.7%和14.9%。土耳其男孩和女孩的身体尺寸变量随年龄增长而增加。AFA最显著的风险因素为食欲、睡眠时间、家庭收入和电梯使用情况。

结论

AFA与其他知名人体测量指标相结合,可能是确定营养状况的重要指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验