Luz Paula M, Mendes Beatriz V M, Codeço Claudia T, Struchiner Claudio J, Galvani Alison P
Department of Epidemiology and Public Health, Yale University, New Haven, Connecticut 06511, USA.
Am J Trop Med Hyg. 2008 Dec;79(6):933-9.
We use the Box-Jenkins approach to fit an autoregressive integrated moving average (ARIMA) model to dengue incidence in Rio de Janeiro, Brazil, from 1997 to 2004. We find that the number of dengue cases in a month can be estimated by the number of dengue cases occurring one, two, and twelve months prior. We use our fitted model to predict dengue incidence for the year 2005 when two alternative approaches are used: 12-steps ahead versus 1-step ahead. Our calculations show that the 1-step ahead approach for predicting dengue incidence provides significantly more accurate predictions (P value=0.002, Wilcoxon signed-ranks test) than the 12-steps ahead approach. We also explore the predictive power of alternative ARIMA models incorporating climate variables as external regressors. Our findings indicate that ARIMA models are useful tools for monitoring dengue incidence in Rio de Janeiro. Furthermore, these models can be applied to surveillance data for predicting trends in dengue incidence.
我们采用Box-Jenkins方法,对1997年至2004年巴西里约热内卢的登革热发病率拟合自回归积分移动平均(ARIMA)模型。我们发现,一个月内的登革热病例数可以通过前一个月、两个月和十二个月出现的登革热病例数来估计。我们使用拟合模型预测2005年的登革热发病率,采用了两种替代方法:提前12步预测与提前1步预测。我们的计算表明,提前1步预测登革热发病率的方法比提前12步预测的方法提供了显著更准确的预测(P值 = 0.002,Wilcoxon符号秩检验)。我们还探索了将气候变量作为外部回归变量纳入的替代ARIMA模型的预测能力。我们的研究结果表明,ARIMA模型是监测里约热内卢登革热发病率的有用工具。此外,这些模型可应用于监测数据,以预测登革热发病率的趋势。