Suppr超能文献

家族性肌萎缩侧索硬化症典型的铜/锌超氧化物歧化酶增加了SOD1G93A小鼠线粒体的易损性并扰乱了钙离子稳态。

Cu/Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of mitochondria and perturbs Ca2+ homeostasis in SOD1G93A mice.

作者信息

Jaiswal Manoj Kumar, Keller Bernhard U

机构信息

Center of Physiology, University of Goettingen, Goettingen, Germany.

出版信息

Mol Pharmacol. 2009 Mar;75(3):478-89. doi: 10.1124/mol.108.050831. Epub 2008 Dec 5.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of defined motoneuron populations in the brainstem and spinal cord. Although low cytosolic calcium (Ca(2+)) buffering and a strong interaction between metabolic mechanisms and Ca(2+) have been associated with selective motoneuron vulnerability, the underlying cellular mechanisms are barely understood. To elucidate the underlying molecular events, we used rapid charge-cooled device imaging to evaluate Ca(2+) signaling and metabolic signatures in the brainstem slices of SOD1(G93A) mice, the mouse model of human ALS, at 8 to 9 and 14 to 15 weeks of age, corresponding to the presymptomatic and symptomatic stages of motor dysfunction, respectively, and compared the results with corresponding age-matched wild-type littermates. We also monitored the mitochondrial membrane potential (Delta(Psim)) of brainstem motoneurons, a valuable tool for characterizing the metabolic signature of intrinsic energy profiles and considered to be a good experimental measure for monitoring energy metabolism in cells. We found that different pharmacological interventions substantially disrupt Delta(Psim) in SOD1(G93A) motoneurons during the symptomatic stage. Furthermore, we investigated the impact of impaired mitochondrial mechanisms on Ca(2+) regulation by using the membrane-permeable indicator fura-acetoxy methyl ester. Taken together, the results indicate that mitochondrial disruptions are critical elements of SOD1(G93A)-mediated motoneuron degeneration in which selective motoneuron vulnerability results from a synergistic accumulation of risk factors, including the disruption of electrochemical potential, low Ca(2+) buffering, and strong mitochondrial control of Ca(2+). The stabilization of mitochondria-related signal cascades may represent a useful strategy for clinical neuroprotection in ALS.

摘要

肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,其特征是脑干和脊髓中特定运动神经元群体的选择性丧失。尽管低细胞质钙(Ca(2+))缓冲以及代谢机制与Ca(2+)之间的强烈相互作用与选择性运动神经元易损性有关,但其潜在的细胞机制仍几乎不为人知。为了阐明潜在的分子事件,我们使用快速电荷冷却设备成像来评估人类ALS小鼠模型SOD1(G93A)小鼠在8至9周龄和14至15周龄时脑干切片中的Ca(2+)信号和代谢特征,这两个阶段分别对应运动功能障碍的症状前期和症状期,并将结果与相应年龄匹配的野生型同窝小鼠进行比较。我们还监测了脑干运动神经元的线粒体膜电位(Delta(Psim)),这是一种用于表征内在能量谱代谢特征的有价值工具,并且被认为是监测细胞能量代谢的良好实验指标。我们发现,在症状期,不同的药物干预会显著破坏SOD1(G93A)运动神经元中的Delta(Psim)。此外,我们使用膜通透性指示剂fura-乙酰氧基甲酯研究了线粒体机制受损对Ca(2+)调节的影响。综合来看,结果表明线粒体破坏是SOD1(G93A)介导的运动神经元变性的关键因素,其中选择性运动神经元易损性是由风险因素的协同积累导致的,包括电化学电位的破坏、低Ca(2+)缓冲以及线粒体对Ca(2+)的强力控制。稳定与线粒体相关的信号级联反应可能是ALS临床神经保护的一种有用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验