Suppr超能文献

大肠杆菌K-12中napF(周质硝酸还原酶)操纵子表达的分解代谢物阻遏控制

Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12.

作者信息

Stewart Valley, Bledsoe Peggy J, Chen Li-Ling, Cai Amie

机构信息

Department of Microbiology, University of California, One Shields Avenue, Davis, CA 95616-8665, USA.

出版信息

J Bacteriol. 2009 Feb;191(3):996-1005. doi: 10.1128/JB.00873-08. Epub 2008 Dec 5.

Abstract

Escherichia coli, a facultative aerobe, expresses two distinct respiratory nitrate reductases. The periplasmic NapABC enzyme likely functions during growth in nitrate-limited environments, whereas the membrane-bound NarGHI enzyme functions during growth in nitrate-rich environments. Maximal expression of the napFDAGHBC operon encoding periplasmic nitrate reductase results from synergistic transcription activation by the Fnr and phospho-NarP proteins, acting in response to anaerobiosis and nitrate or nitrite, respectively. Here, we report that, during anaerobic growth with no added nitrate, less-preferred carbon sources stimulated napF operon expression by as much as fourfold relative to glucose. Deletion analysis identified a cyclic AMP receptor protein (Crp) binding site upstream of the NarP and Fnr sites as being required for this stimulation. The napD and nrfA operon control regions from Shewanella spp. also have apparent Crp and Fnr sites, and expression from the Shewanella oneidensis nrfA control region cloned in E. coli was subject to catabolite repression. In contrast, the carbon source had relatively little effect on expression of the narGHJI operon encoding membrane-bound nitrate reductase under any growth condition tested. Carbon source oxidation state had no influence on synthesis of either nitrate reductase. The results suggest that the Fnr and Crp proteins may act synergistically to enhance NapABC synthesis during growth with poor carbon sources to help obtain energy from low levels of nitrate.

摘要

大肠杆菌是一种兼性需氧菌,表达两种不同的呼吸硝酸盐还原酶。周质NapABC酶可能在硝酸盐受限环境的生长过程中发挥作用,而膜结合的NarGHI酶在硝酸盐丰富环境的生长过程中发挥作用。编码周质硝酸盐还原酶的napFDAGHBC操纵子的最大表达是由Fnr和磷酸化NarP蛋白协同转录激活产生的,它们分别对厌氧和硝酸盐或亚硝酸盐作出反应。在此,我们报告,在不添加硝酸盐的厌氧生长过程中,相对于葡萄糖,较不偏好的碳源可使napF操纵子的表达增加多达四倍。缺失分析确定,这种刺激需要在NarP和Fnr位点上游有一个环腺苷酸受体蛋白(Crp)结合位点。来自希瓦氏菌属的napD和nrfA操纵子控制区也有明显的Crp和Fnr位点,克隆到大肠杆菌中的嗜铁钩端螺旋菌nrfA控制区的表达受到分解代谢物阻遏。相比之下,在任何测试的生长条件下,碳源对编码膜结合硝酸盐还原酶的narGHJI操纵子的表达影响相对较小。碳源氧化态对任何一种硝酸盐还原酶的合成均无影响。结果表明,Fnr和Crp蛋白可能协同作用,在利用不良碳源生长期间增强NapABC的合成,以帮助从低水平的硝酸盐中获取能量。

相似文献

1
Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12.
J Bacteriol. 2009 Feb;191(3):996-1005. doi: 10.1128/JB.00873-08. Epub 2008 Dec 5.
5
Dual overlapping promoters control napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12.
J Bacteriol. 2003 Oct;185(19):5862-70. doi: 10.1128/JB.185.19.5862-5870.2003.
7
Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by Escherichia coli K-12.
J Bacteriol. 2002 Mar;184(5):1314-23. doi: 10.1128/JB.184.5.1314-1323.2002.

引用本文的文献

1
From genes to function: regulation, maturation, and evolution of cytochrome nitrite reductase in nitrate reduction to ammonium.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0029225. doi: 10.1128/aem.00292-25. Epub 2025 Jun 9.
2
A Nitric Oxide-Responsive Transcriptional Regulator NsrR Cooperates With Lrp and CRP to Tightly Control the Gene in .
Front Microbiol. 2021 May 21;12:681196. doi: 10.3389/fmicb.2021.681196. eCollection 2021.
5
Epithelial Coculture and l-Lactate Promote Growth of Helicobacter cinaedi under H2-Free Aerobic Conditions.
Appl Environ Microbiol. 2016 Oct 27;82(22):6701-6714. doi: 10.1128/AEM.01943-16. Print 2016 Nov 15.
6
Cross Talk Inhibition Nullified by a Receiver Domain Missense Substitution.
J Bacteriol. 2015 Oct;197(20):3294-306. doi: 10.1128/JB.00436-15. Epub 2015 Aug 10.
7
Sensor-response regulator interactions in a cross-regulated signal transduction network.
Microbiology (Reading). 2015 Jul;161(7):1504-15. doi: 10.1099/mic.0.000092. Epub 2015 Apr 13.
9
Nitrate and periplasmic nitrate reductases.
Chem Soc Rev. 2014 Jan 21;43(2):676-706. doi: 10.1039/c3cs60249d.
10
Genome-scale analysis of escherichia coli FNR reveals complex features of transcription factor binding.
PLoS Genet. 2013 Jun;9(6):e1003565. doi: 10.1371/journal.pgen.1003565. Epub 2013 Jun 20.

本文引用的文献

1
Effects of Fis on Escherichia coli gene expression during different growth stages.
Microbiology (Reading). 2007 Sep;153(Pt 9):2922-2940. doi: 10.1099/mic.0.2007/008565-0.
5
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. doi: 10.1128/MMBR.00024-06.
8
Integration of three signals at the Escherichia coli nrf promoter: a role for Fis protein in catabolite repression.
Mol Microbiol. 2005 Jul;57(2):496-510. doi: 10.1111/j.1365-2958.2005.04701.x.
9
Catabolite activator protein: DNA binding and transcription activation.
Curr Opin Struct Biol. 2004 Feb;14(1):10-20. doi: 10.1016/j.sbi.2004.01.012.
10
Evolutionary comparisons suggest many novel cAMP response protein binding sites in Escherichia coli.
Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2404-9. doi: 10.1073/pnas.0308628100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验