Huynh TuAnh Ngoc, Chen Li-Ling, Stewart Valley
1 Food Science Graduate Group, University of California, Davis, CA, 95616-8665, USA.
2 Department of Microbiology & Molecular Genetics, University of California, Davis, CA 95616-8665, USA.
Microbiology (Reading). 2015 Jul;161(7):1504-15. doi: 10.1099/mic.0.000092. Epub 2015 Apr 13.
Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in Escherichia coli represent a paradigm for a cross-regulation network, in which the paralogous sensor-response regulator pairs, NarX-NarL and NarQ-NarP, exhibit both cognate (e.g. NarX-NarL) and non-cognate (e.g. NarQ-NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor-response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (dimerization and histidyl phosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX-NarL, NarQ-NarL and NarQ-NarP pairs but a much weaker interaction for the NarX-NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor-regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX-NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX-NarL interaction, apparently by destabilizing the NarL receiver-effector domain interface.
双组分信号转导涉及组氨酸激酶传感器和响应调节效应器之间的磷酸转移。大肠杆菌中对硝酸盐响应的双组分信号转导系统代表了一个交叉调节网络的范例,其中同源的传感器-响应调节因子对,即NarX-NarL和NarQ-NarP,表现出同源(如NarX-NarL)和非同源(如NarQ-NarL)相互作用来控制输出。在此,我们描述了细菌腺苷酸环化酶双杂交(BACTH)分析的结果,以研究传感器二聚化以及传感器-响应调节因子同源和非同源对之间的相互作用。虽然BACTH分析结果表明NarX和NarQ传感器相互作用,但基因内互补试验结果表明它们不会形成功能性异二聚体。此外,基因内互补表明NarX和NarQ都经历分子间自磷酸化,这与先前报道的二聚化和组氨酸磷酸转移(DHp)结构域环的手性与自磷酸化模式之间的相关性不同。BACTH分析结果显示NarX-NarL、NarQ-NarL和NarQ-NarP对之间有很强的相互作用,但NarX-NarP对之间的相互作用要弱得多。这表明不对称交叉调节是由不同传感器-调节因子对之间的结合亲和力差异导致的。最后,结果表明NarL效应器(DNA结合)结构域抑制NarX-NarL相互作用。受体结构域残基Ser-80处的错义取代增强了NarX-NarL相互作用,显然是通过破坏NarL受体-效应器结构域界面的稳定性来实现的。