Cheng Dunlei, Stamey James D, Branscum Adam J
Institute for Health Care Research and Improvement, Baylor Health Care System, Dallas, TX 75206, U.S.A.
Stat Med. 2009 Feb 28;28(5):848-63. doi: 10.1002/sim.3505.
We develop a simulation-based procedure for determining the required sample size in binomial regression risk assessment studies when response data are subject to misclassification. A Bayesian average power criterion is used to determine a sample size that provides high probability, averaged over the distribution of potential future data sets, of correctly establishing the direction of association between predictor variables and the probability of event occurrence. The method is broadly applicable to any parametric binomial regression model including, but not limited to, the popular logistic, probit, and complementary log-log models. We detail a common medical scenario wherein ascertainment of true disease status is impractical or otherwise impeded, and in its place the outcome of a single binary diagnostic test is used as a surrogate. These methods are then extended to the two diagnostic test setting. We illustrate the method with categorical covariates using one example that involves screening for human papillomavirus. This example coupled with results from simulated data highlights the utility of our Bayesian sample size procedure with error prone measurements.
我们开发了一种基于模拟的程序,用于在响应数据存在错误分类的二项式回归风险评估研究中确定所需的样本量。使用贝叶斯平均功效标准来确定一个样本量,该样本量在潜在未来数据集的分布上具有高概率,能够正确确定预测变量与事件发生概率之间的关联方向。该方法广泛适用于任何参数化二项式回归模型,包括但不限于流行的逻辑斯蒂、概率单位和互补对数-对数模型。我们详细描述了一种常见的医学场景,其中确定真实疾病状态不切实际或受到其他阻碍,取而代之的是将单一二元诊断测试的结果用作替代指标。然后将这些方法扩展到两种诊断测试的情况。我们使用一个涉及人类乳头瘤病毒筛查的例子来说明分类协变量的方法。这个例子与模拟数据的结果相结合,突出了我们具有易出错测量的贝叶斯样本量程序的实用性。