Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
J Phys Chem A. 2010 Apr 22;114(15):5195-204. doi: 10.1021/jp911048p.
The kinetics and mechanism for the reaction of singlet state CH(2) with N(2) have been investigated by ab initio calculations with rate constant prediction. The potential energy surface of the reactions has been calculated by single-point calculations at the CCSD(T)/6-311+G(3df,2p) level based on geometries optimized at the B3LYP/6-311+G(3df,2p) level. By comparing the differences in the predicted heats of reaction with the available experimental values, we estimate the uncertainties in the calculated heats of reactions are +/-1.4 kcal/mol. Rate constants for various product channels in the temperature range of 300-3000 K are predicted by the variational transition state and RRKM theories. The predicted total rate constants for (1)CH(2) + N(2) at 760 Torr Ar pressure can be represented by the expressions s-k(total) = 9.67 x 10(+7) x T (-6.88) exp (-1345/T) cm(3) molecule(-1) s(-1) at T = 300-2400 K and 3.15 x 10(-229) x T (+56.18) exp (128 000/T) cm(3) molecule(-1) s(-1) at T = 2400-3000 K. The branching ratios of the primary channels for (1)CH(2) + N(2) are predicted: k(1) for forming singlet s-CH(2)N(2)-a (diazomethane) accounts for 0.97-0.01, k(2) + k(4) for producing HCNN-a + H accounts for 0.00-0.69, k(3) for forming singlet s-CH(2)N(2)-b (3H-diazirine) accounts for 0.03-0.00, k(5) for producing HCN + NH accounts for 0.00-0.18, and k(6) for producing CNNH + H accounts for 0.00-0.11 in the temperature range of 300-3000 K. The rate constant predicted for the unimoclecular decomposition of diazomethane producing (1)CH(2) + N(2) agrees closely with experimental results. Because of the low stability of the two isomeric CH(2)N(2) adducts and the high barriers for production of CN-containing products, the contribution of the CH(2) + N(2) reaction to NO formation becomes very small.
通过从头计算和速率常数预测,研究了单线态 CH(2)与 N(2)反应的动力学和机理。反应势能面是在 B3LYP/6-311+G(3df,2p)水平优化的几何结构的基础上,通过单点计算在 CCSD(T)/6-311+G(3df,2p)水平上计算得到的。通过比较预测的反应热与可用实验值之间的差异,我们估计计算的反应热的不确定性为 +/-1.4 kcal/mol。在 300-3000 K 的温度范围内,通过变分过渡态和 RRKM 理论预测了各种产物通道的速率常数。在 760 Torr Ar 压力下,(1)CH(2) + N(2)的总速率常数可以表示为表达式 s-k(total) = 9.67 x 10(+7) x T (-6.88) exp (-1345/T) cm(3) molecule(-1) s(-1) 在 T = 300-2400 K 和 3.15 x 10(-229) x T (+56.18) exp (128 000/T) cm(3) molecule(-1) s(-1) 在 T = 2400-3000 K。(1)CH(2) + N(2)的主要通道的分支比预测为:k(1)用于形成单重态 s-CH(2)N(2)-a(重氮甲烷)占 0.97-0.01,k(2) + k(4)用于生成 HCNN-a + H 占 0.00-0.69,k(3)用于形成单重态 s-CH(2)N(2)-b(3H-二氮嗪)占 0.03-0.00,k(5)用于生成 HCN + NH 占 0.00-0.18,k(6)用于生成 CNNH + H 占 0.00-0.11在 300-3000 K 的温度范围内。预测的重氮甲烷单分子分解产生(1)CH(2) + N(2)的速率常数与实验结果非常吻合。由于两种异构 CH(2)N(2)加合物的稳定性低以及含 CN 产物生成的高势垒,CH(2) + N(2)反应对 NO 形成的贡献变得非常小。