Carcione José M, Helbig Klaus
Instituto Nazionale di Oceanografia e di Geofisica Sperimentale, Borgo Grotta Gigante 42c, 34016 Trieste, Italy.
J Acoust Soc Am. 2008 Oct;124(4):2053-60. doi: 10.1121/1.2968705.
In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.
1821年,菲涅耳得出了光学双轴晶体的波面,假设光波是以太的振动,其中纵向振动(P波)不传播。存在一种在数学上类似于菲涅耳晶体的各向异性弹性介质。该介质有四个弹性常数:一个与球面P波面相关的P波模量,以及三个与剪切波相关的弹性常数c(44)、c(55)和c(66),它们在数学上等效于三个介电常数ε(11)、ε(22)和ε(33),具体如下:μ(0)ε(11)<==>ρ/c(44),μ(0)ε(22)<==>ρ/c(55),μ(0)ε(33)<==>ρ/c(66),其中μ(0)是真空磁导率,ρ是质量密度。这些关系也表示了弹性波和电磁波沿介质主轴方向速度的等效性。通过将P波模量设为零可以得到完全的数学等效性,但这会产生一个不稳定的弹性介质(假设的以太)。为了获得稳定性,必须假设P波速度为无穷大(不可压缩性)。另一个等效的菲涅耳波面对应于一种具有反常极化的介质。即使对于非零的P波模量,这种介质在物理上也是不稳定的。