Rowan Matthew P, Ruparel Nikita B, Patwardhan Amol M, Berg Kelly A, Clarke William P, Hargreaves Kenneth M
Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900 USA.
Eur J Pharmacol. 2009 Jan 14;602(2-3):283-7. doi: 10.1016/j.ejphar.2008.11.028. Epub 2008 Nov 25.
Although centrally acting opioid analgesics produce profound antinociception under basal conditions, the antinociceptive properties of peripherally restricted opioid analgesics are generally only detectable after inflammation or injection of inflammatory mediators. Despite considerable research, the cellular mechanisms regulating the functional competence of peripheral opioid receptor systems for inhibition of nociception remain unclear. Recent work has demonstrated that brief pre-treatment (priming) with bradykinin, arachidonic acid, protease-activated receptor-2 agonists, or direct activators of protein kinase C (PKC) are capable of inducing the functional competence of the opioid receptor system in cultures of primary sensory neurons in vitro. Here we report that the peripheral delta opioid receptor system also requires PKC-dependent priming to inhibit prostaglandin E(2) (PGE(2))-induced thermal allodynia in the rat. Peripheral hindpaw injection of [D-Pen(2,5)]-enkephalin (DPDPE), a selective delta opioid receptor agonist, did not alter PGE(2)-induced thermal allodynia. However, following priming (15 min) with bradykinin or arachidonic acid, DPDPE produced a significant reduction in allodynia that was antagonist reversible, peripherally restricted, and exhibited a typical dose-response relationship. Furthermore, the bradykinin priming effect was blocked by the PKC inhibitors, bisindolylmaleimide I and chelerythrine. Collectively, these data support prior in vitro findings that, although present on primary sensory neurons, peripheral opioid receptor systems are functionally inactive under basal conditions and require activation of a PKC- and arachidonic acid-dependent signaling pathway to develop functional competence in vivo.
尽管中枢作用的阿片类镇痛药在基础条件下能产生显著的镇痛作用,但外周受限的阿片类镇痛药的镇痛特性通常仅在炎症或注射炎症介质后才能检测到。尽管进行了大量研究,但调节外周阿片受体系统抑制伤害感受功能能力的细胞机制仍不清楚。最近的研究表明,用缓激肽、花生四烯酸、蛋白酶激活受体-2激动剂或蛋白激酶C(PKC)的直接激活剂进行短暂预处理(引发)能够在体外原代感觉神经元培养物中诱导阿片受体系统的功能能力。在此我们报告,外周δ阿片受体系统也需要PKC依赖性引发来抑制大鼠中前列腺素E2(PGE2)诱导的热痛觉过敏。外周后爪注射选择性δ阿片受体激动剂[D-Pen(2,5)]-脑啡肽(DPDPE)不会改变PGE2诱导的热痛觉过敏。然而,在用缓激肽或花生四烯酸引发(15分钟)后,DPDPE能显著减轻痛觉过敏,这种作用可被拮抗剂逆转,具有外周局限性,且呈现典型的剂量反应关系。此外,缓激肽引发效应被PKC抑制剂双吲哚马来酰亚胺I和白屈菜红碱阻断。总体而言,这些数据支持了先前的体外研究结果,即尽管外周阿片受体系统存在于原代感觉神经元上,但在基础条件下功能不活跃,需要激活PKC和花生四烯酸依赖性信号通路才能在体内发挥功能能力。