Suppr超能文献

通过傅里叶变换红外光谱法结合多元统计分析和人工神经网络对乙烯/丙烯/1-丁烯三元共聚物中的丁烯浓度进行预测。

Butene concentration prediction in ethylene/propylene/1-butene terpolymers by FT-IR spectroscopy through multivariate statistical analysis and artificial neural networks.

作者信息

Marengo Emilio, Longo Valentina, Bobba Marco, Robotti Elisa, Zerbinati Orfeo, Di Martino Silvana

机构信息

Department of Environmental and Life Sciences, University of Eastern Piedmont, Alessandria, Italy.

出版信息

Talanta. 2009 Jan 15;77(3):1111-9. doi: 10.1016/j.talanta.2008.08.030. Epub 2008 Sep 7.

Abstract

This paper reports the development of calibration models for quality control in the production of ethylene/propylene/1-butene terpolymers by the use of multivariate tools and FT-IR spectroscopy. 1-Butene concentration prediction is achieved in terpolymers by coupling FT-IR spectroscopy to multivariate regression tools. A dataset of 26 terpolymers (14 coming from a constrained experimental design for mixtures, plus 12 terpolymers used for external validation) was analysed by FT-IR spectroscopy. An internal method of "Polimeri Europa" plant, based on (13)C NMR spectroscopy is used to determine the percentage of 1-butene in the samples. Then, different multivariate tools are used for 1-butene concentration prediction based on the FT-IR spectra recorded. Different multivariate calibration methods were explored: principal component regression (PCR), partial least squares (PLS), stepwise OLS regression (SWR) and artificial neural networks (ANNs). The model obtained by back-propagation neural networks turned out to be the best one. The performances of the BP-ANN model were further improved by variable selection procedures based on the calculation of the first derivative of the network. The proposed approach allows the monitoring in real time of the polymer synthesis and the estimation of the characteristics of the product attainable from the concentration of 1-butene.

摘要

本文报道了利用多元工具和傅里叶变换红外光谱(FT-IR)开发乙烯/丙烯/1-丁烯三元共聚物生产过程中质量控制校准模型的情况。通过将FT-IR光谱与多元回归工具相结合,实现了三元共聚物中1-丁烯浓度的预测。对26种三元共聚物的数据集(14种来自混合物的约束实验设计,另外12种用于外部验证的三元共聚物)进行了FT-IR光谱分析。采用基于(13)C核磁共振光谱的“欧洲聚合物”工厂内部方法来测定样品中1-丁烯的百分比。然后,基于记录的FT-IR光谱,使用不同的多元工具进行1-丁烯浓度预测。探索了不同的多元校准方法:主成分回归(PCR)、偏最小二乘法(PLS)、逐步OLS回归(SWR)和人工神经网络(ANN)。结果表明,通过反向传播神经网络获得的模型是最佳模型。基于网络一阶导数计算的变量选择程序进一步提高了BP-ANN模型的性能。所提出的方法能够实时监测聚合物合成过程,并根据1-丁烯的浓度估算可获得的产品特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验