Schyns Philippe G, Gosselin Frédéric, Smith Marie L
Centre for Cognitive Neuroimaging, Department of Psychology, University of Glasgow, 58 Hillhead Street, Glasgow G12 8QB, UK.
Trends Cogn Sci. 2009 Jan;13(1):20-6. doi: 10.1016/j.tics.2008.09.008. Epub 2008 Dec 11.
If the brain is a machine that processes information, then its cognitive activity can be interpreted as a set of information processing states linking stimulus to response (i.e. as a mechanism or an algorithm). The cornerstone of this research agenda is the existence of a method to translate the measurable states of brain activity into the information processing states of a cognitive theory. Here, we contend that reverse correlation methods can provide this translation and we frame the transitions between information processing states in the context of automata theory. We illustrate, using examples from visual cognition, how this novel framework can be applied to understand the information processing algorithms of the brain in cognitive neuroscience.
如果大脑是一台处理信息的机器,那么其认知活动可被解释为一组将刺激与反应联系起来的信息处理状态(即作为一种机制或算法)。这一研究议程的基石是存在一种方法,可将大脑活动的可测量状态转化为认知理论的信息处理状态。在此,我们认为反向关联方法能够提供这种转化,并且我们在自动机理论的背景下构建信息处理状态之间的转换。我们通过视觉认知的例子来说明,这种新颖的框架如何能够应用于认知神经科学中理解大脑的信息处理算法。