Suppr超能文献

一氧化氮合酶的首个半反应机制:量子力学/分子力学研究质子与氧耦合电子转移在反应中的作用

First half-reaction mechanism of nitric oxide synthase: the role of proton and oxygen coupled electron transfer in the reaction by quantum mechanics/molecular mechanics.

作者信息

Cho Kyung-Bin, Carvajal Maria Angels, Shaik Sason

机构信息

Institute of Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel.

出版信息

J Phys Chem B. 2009 Jan 8;113(1):336-46. doi: 10.1021/jp8073199.

Abstract

The first half-reaction of nitric oxide synthase (NOS) is investigated by means of quantum mechanical/molecular mechanical (QM/MM) calculations. An energetically feasible arginine hydroxylation path was found only when the iron-oxy complex accepted one proton from an external source. The so formed species has not been considered in heme chemistry; it is described as Por(+*)Fe(III)-OOH and is characterized by the same molecular constituency as the more known ferric-hydroperoxide species, compound 0, but has a cation-radical porphyrin moiety. The reaction itself is found to involve proton coupled electron transfer (PCET) and oxygen coupled electron transfer (OCET) steps en route to the formation of compound I and the ultimate monooxygenation of arginine. The cofactor H(4)B turns out to be a key player in the mechanism acting alternatively as an electron donor (when neutral) and an electron sink (when in its radical-cation state) and, thereby, providing the electron transfer component in the various coupled proton and oxygen transfer steps (see Scheme 4 ). The various pieces of this mechanism account for many of the experimental observations, such as the following: (a) the origins of the second proton supplied to the heme, (b) the elusiveness of compound I, (c) the inactivity of peroxide-shunt pathways in NOS first half-reaction, (d) the inhibition of the H(4)B analogue 4-amino-H(4)B due to protonation at the N3 position, (e) the roles of Trp188 (iNOS numbering) and the crystal water at the active site (W115), and so on. Alternative mechanistic hypotheses are tested and excluded, and a new mechanism for the NOS second half-reaction is proposed.

摘要

通过量子力学/分子力学(QM/MM)计算研究了一氧化氮合酶(NOS)的第一个半反应。仅当铁氧络合物从外部来源接受一个质子时,才发现了一条能量上可行的精氨酸羟基化途径。如此形成的物种在血红素化学中尚未被考虑;它被描述为Por(+*)Fe(III)-OOH,其分子组成与更知名的铁氢过氧化物物种化合物0相同,但具有阳离子自由基卟啉部分。发现该反应本身在形成化合物I和精氨酸最终单加氧的过程中涉及质子耦合电子转移(PCET)和氧耦合电子转移(OCET)步骤。辅因子H(4)B原来是该机制中的关键参与者,它交替充当电子供体(呈中性时)和电子受体(呈自由基阳离子状态时),从而在各种耦合质子和氧转移步骤中提供电子转移成分(见方案4)。该机制的各个部分解释了许多实验观察结果,例如:(a)供应给血红素的第二个质子的来源,(b)化合物I难以捉摸的原因,(c)NOS第一个半反应中过氧化物分流途径的无活性,(d)由于在N3位置质子化导致H(4)B类似物4-氨基-H(4)B的抑制作用,(e)Trp188(iNOS编号)和活性位点处的结晶水(W115)的作用等等。对替代的机制假设进行了测试并排除,并提出了一种新的NOS第二个半反应机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验