Faruque Omar M, Le-Nguyen Dung, Lajoix Anne-Dominique, Vives Eric, Petit Pierre, Bataille Dominique, Hani El-Habib
CNRS UMR-5232, Faculté de Pharmacie, Bat. D, 15 Ave. Charles Flahaut, Montpellier 34093 Cedex 5, France.
Am J Physiol Cell Physiol. 2009 Feb;296(2):C306-16. doi: 10.1152/ajpcell.00216.2008. Epub 2008 Dec 10.
Stimulation of numerous G protein-coupled receptors leads to the elevation of intracellular concentrations of cAMP, which subsequently activates the PKA pathway. Specificity of the PKA signaling module is determined by a sophisticated subcellular targeting network that directs the spatiotemporal activation of the kinase. This specific compartmentalization mechanism occurs through high-affinity interactions of PKA with A-kinase anchoring proteins (AKAPs), the role of which is to target the kinase to discrete subcellular microdomains. Recently, a peptide designated "AKAPis" has been proposed to competitively inhibit PKA-AKAP interactions in vitro. We therefore sought to characterize a cell-permeable construct of the AKAPis inhibitor and use it as a tool to characterize the impact of PKA compartmentalization by AKAPs. Using insulin-secreting pancreatic beta-cells (INS-1 cells), we showed that TAT-AKAPis (at a micromolar range) dose dependently disrupted a significant fraction of endogenous PKA-AKAP interactions. Immunoflurescent analysis also indicated that TAT-AKAPis significantly affected PKA subcellular localization. Furthermore, TAT-AKAPis markedly attenuated glucagon-induced phosphorylations of p44/p42 MAPKs and cAMP response element binding protein, which are downstream effectors of PKA. In parallel, TAT-AKAPis dose dependently inhibited the glucagon-induced potentiation of insulin release. Therefore, AKAP-mediated subcellular compartmentalization of PKA represents a key mechanism for PKA-dependent phosphorylation events and potentiation of insulin secretion in intact pancreatic beta-cells. More interestingly, our data highlight the effectiveness of the cell-permeable peptide-mediated approach to monitoring in cellulo PKA-AKAP interactions and delineating PKA-dependent phosphorylation events underlying specific cellular responses.
多种G蛋白偶联受体的刺激会导致细胞内cAMP浓度升高,进而激活PKA信号通路。PKA信号模块的特异性由一个复杂的亚细胞靶向网络决定,该网络指导激酶的时空激活。这种特定的区室化机制通过PKA与A激酶锚定蛋白(AKAPs)的高亲和力相互作用发生,AKAPs的作用是将激酶靶向离散的亚细胞微区。最近,一种名为“AKAPis”的肽被提出在体外竞争性抑制PKA-AKAP相互作用。因此,我们试图表征AKAPis抑制剂的细胞可渗透构建体,并将其用作工具来表征AKAPs对PKA区室化的影响。使用分泌胰岛素的胰腺β细胞(INS-1细胞),我们发现TAT-AKAPis(在微摩尔范围内)剂量依赖性地破坏了相当一部分内源性PKA-AKAP相互作用。免疫荧光分析还表明,TAT-AKAPis显著影响PKA的亚细胞定位。此外,TAT-AKAPis显著减弱了胰高血糖素诱导的p44/p42 MAPKs和cAMP反应元件结合蛋白的磷酸化,它们是PKA的下游效应器。同时,TAT-AKAPis剂量依赖性地抑制了胰高血糖素诱导的胰岛素释放增强。因此,AKAP介导的PKA亚细胞区室化是完整胰腺β细胞中PKA依赖性磷酸化事件和胰岛素分泌增强的关键机制。更有趣的是,我们的数据突出了细胞可渗透肽介导的方法在监测细胞内PKA-AKAP相互作用和描绘特定细胞反应背后的PKA依赖性磷酸化事件方面的有效性。