Suppr超能文献

IscR通过调节I型菌毛的表达来控制大肠杆菌中依赖铁的生物膜形成。

IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression.

作者信息

Wu Yun, Outten F Wayne

机构信息

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.

出版信息

J Bacteriol. 2009 Feb;191(4):1248-57. doi: 10.1128/JB.01086-08. Epub 2008 Dec 12.

Abstract

Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we examined the role of iron availability in regulating biofilm formation in Escherichia coli. The results indicate that biofilm formation is repressed under low-iron conditions in E. coli. Furthermore, a key iron regulator, IscR, controls biofilm formation in response to changes in cellular Fe-S homeostasis. IscR regulates the FimE recombinase to control expression of type I fimbriae in E. coli. We propose that iron-dependent regulation of FimE via IscR leads to decreased surface attachment and biofilm dispersal under iron-limiting conditions.

摘要

生物膜形成是一个受多种环境信号调控的复杂发育过程。除其他营养物质外,过渡金属铁也能调控生物膜形成。铁对生物膜形成的调控因细菌种类而异,控制铁依赖性生物膜形成的确切调控途径往往未知或仅部分得到表征。为填补这一知识空白,我们研究了铁的可利用性在调控大肠杆菌生物膜形成中的作用。结果表明,在大肠杆菌中,低铁条件下生物膜形成受到抑制。此外,一个关键的铁调节因子IscR响应细胞铁硫稳态的变化来控制生物膜形成。IscR调节FimE重组酶以控制大肠杆菌中I型菌毛的表达。我们提出,在铁限制条件下,通过IscR对FimE的铁依赖性调节导致表面附着减少和生物膜分散。

相似文献

1
IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression.
J Bacteriol. 2009 Feb;191(4):1248-57. doi: 10.1128/JB.01086-08. Epub 2008 Dec 12.
2
Regulation of type 1 fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli.
Microbiology (Reading). 2005 Oct;151(Pt 10):3287-3298. doi: 10.1099/mic.0.28098-0.
3
Pleiotropic roles of uvrY on biofilm formation, motility and virulence in uropathogenic Escherichia coli CFT073.
PLoS One. 2013;8(2):e55492. doi: 10.1371/journal.pone.0055492. Epub 2013 Feb 1.
4
The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia coli.
J Bacteriol. 2012 Jul;194(13):3475-85. doi: 10.1128/JB.06596-11. Epub 2012 Apr 20.
8
Mat fimbriae promote biofilm formation by meningitis-associated Escherichia coli.
Microbiology (Reading). 2010 Aug;156(Pt 8):2408-2417. doi: 10.1099/mic.0.039610-0. Epub 2010 Jun 3.
10
Fe-S cluster homeostasis and beyond: The multifaceted roles of IscR.
Biochim Biophys Acta Mol Cell Res. 2024 Aug;1871(6):119749. doi: 10.1016/j.bbamcr.2024.119749. Epub 2024 May 17.

引用本文的文献

1
Treatment of bacterial biothreat agents with a novel purified bioactive lactoferrin affects both growth and biofilm formation.
Front Cell Infect Microbiol. 2025 Jun 17;15:1603689. doi: 10.3389/fcimb.2025.1603689. eCollection 2025.
2
L. as biofilm inhibitor: Insights into the mechanism of action using proteomics/metabolomics and toxicity studies.
Biofilm. 2025 Feb 28;9:100268. doi: 10.1016/j.bioflm.2025.100268. eCollection 2025 Jun.
4
Fe-S cluster homeostasis and beyond: The multifaceted roles of IscR.
Biochim Biophys Acta Mol Cell Res. 2024 Aug;1871(6):119749. doi: 10.1016/j.bbamcr.2024.119749. Epub 2024 May 17.
5
A heritable iron memory enables decision-making in .
Proc Natl Acad Sci U S A. 2023 Nov 28;120(48):e2309082120. doi: 10.1073/pnas.2309082120. Epub 2023 Nov 21.
6
Bacterial biofilms in the human body: prevalence and impacts on health and disease.
Front Cell Infect Microbiol. 2023 Aug 30;13:1237164. doi: 10.3389/fcimb.2023.1237164. eCollection 2023.
8
The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli.
Braz J Microbiol. 2023 Mar;54(1):259-277. doi: 10.1007/s42770-022-00895-y. Epub 2022 Dec 29.
10
tRNA modification enzyme MiaB connects environmental cues to activation of Pseudomonas aeruginosa type III secretion system.
PLoS Pathog. 2022 Dec 5;18(12):e1011027. doi: 10.1371/journal.ppat.1011027. eCollection 2022 Dec.

本文引用的文献

1
Regulation of the fimB promoter: a case of differential regulation by ppGpp and DksA in vivo.
Mol Microbiol. 2008 Mar;67(6):1223-41. doi: 10.1111/j.1365-2958.2008.06115.x. Epub 2008 Feb 13.
2
Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation.
Microbiology (Reading). 2008 Jan;154(Pt 1):30-41. doi: 10.1099/mic.0.2007/008698-0.
3
Comparative analysis of FimB and FimE recombinase activity.
Microbiology (Reading). 2007 Dec;153(Pt 12):4138-4149. doi: 10.1099/mic.0.2007/010363-0.
4
Discovery of Fur binding site clusters in Escherichia coli by information theory models.
Nucleic Acids Res. 2007;35(20):6762-77. doi: 10.1093/nar/gkm631. Epub 2007 Oct 5.
5
The two-component response regulator RcsB regulates type 1 piliation in Escherichia coli.
J Bacteriol. 2007 Oct;189(19):7159-63. doi: 10.1128/JB.00705-07. Epub 2007 Jul 20.
6
Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa.
Microbiology (Reading). 2007 May;153(Pt 5):1318-1328. doi: 10.1099/mic.0.2006/004911-0.
9
IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins.
Mol Microbiol. 2006 Jul;61(1):206-18. doi: 10.1111/j.1365-2958.2006.05220.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验