Suppr超能文献

伴侣蛋白GroEL识别两亲性螺旋并结合至疏水侧。

GroEL Recognizes an Amphipathic Helix and Binds to the Hydrophobic Side.

作者信息

Li Yali, Gao Xinfeng, Chen Lingling

机构信息

Interdisciplinary Biochemistry Program and the Departments of Chemistry and Biology, Indiana University, Bloomington, Indiana 47405, USA.

出版信息

J Biol Chem. 2009 Feb 13;284(7):4324-31. doi: 10.1074/jbc.M804818200. Epub 2008 Dec 12.

Abstract

GroEL is an essential Escherichia coli molecular chaperon that uses ATP to facilitate correct folding of a range of proteins in a cell. Central to the GroEL substrate diversity is how GroEL recognizes the substrates. The interaction between GroEL and substrate has been proposed to be largely hydrophobic because GroEL interacts with proteins in non-native conformations but not in native forms. Analysis of GroEL substrate proteins reveals that one of its main substrates are proteins with alphabeta folding domains, suggesting that GroEL may stabilize the collapsed alphabeta core by binding to hydrophobic surfaces that are usually buried between the alpha and beta elements. In this study, we characterize the interaction between GroEL and a peptide derived from our previous selection via a phage display method. NMR studies map the peptide-binding site to the region containing Helices H and I, which is consistent with evidence that this region comprises the primary substrate-binding site. The peptide is largely unstructured in solution but adopts a helical conformation when bound to the GroEL apical domain with a moderate affinity (K(d) = 17.1 +/- 2.5 microm). The helical conformation aligns residues to form an amphipathic structure, and the hydrophobic side of this amphipathic helix interacts with GroEL as suggested by fluorescence quenching studies. Together with previous structural studies on the GroEL-peptide complexes, our work supports the notion that the amphipathic secondary elements in the substrate proteins may be the structural motif recognized by GroEL.

摘要

GroEL是一种必需的大肠杆菌分子伴侣,它利用ATP促进细胞内一系列蛋白质的正确折叠。GroEL底物多样性的核心在于它如何识别底物。有人提出GroEL与底物之间的相互作用主要是疏水性的,因为GroEL与非天然构象的蛋白质相互作用,而不与天然形式的蛋白质相互作用。对GroEL底物蛋白的分析表明,其主要底物之一是具有αβ折叠结构域的蛋白质,这表明GroEL可能通过结合通常埋藏在α和β元件之间的疏水表面来稳定折叠的αβ核心。在本研究中,我们通过噬菌体展示方法表征了GroEL与源自我们之前筛选的一种肽之间的相互作用。核磁共振研究将肽结合位点定位到包含螺旋H和I的区域,这与该区域构成主要底物结合位点的证据一致。该肽在溶液中基本无结构,但以中等亲和力(K(d)=17.1±2.5μm)与GroEL顶端结构域结合时会形成螺旋构象。螺旋构象使残基排列形成两亲性结构,荧光猝灭研究表明,这种两亲性螺旋的疏水侧与GroEL相互作用。结合之前对GroEL-肽复合物的结构研究,我们的工作支持了底物蛋白中的两亲性二级元件可能是GroEL识别的结构基序这一观点。

相似文献

1
GroEL Recognizes an Amphipathic Helix and Binds to the Hydrophobic Side.
J Biol Chem. 2009 Feb 13;284(7):4324-31. doi: 10.1074/jbc.M804818200. Epub 2008 Dec 12.
2
Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
Cell Stress Chaperones. 2005 Spring;10(1):24-36. doi: 10.1379/csc-64r1.1.
5
ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin.
Cell. 2012 Mar 30;149(1):113-23. doi: 10.1016/j.cell.2012.02.047. Epub 2012 Mar 22.
6
Domain motions in GroEL upon binding of an oligopeptide.
J Mol Biol. 2003 Nov 28;334(3):489-99. doi: 10.1016/j.jmb.2003.09.074.
7
Folding of maltose binding protein outside of and in GroEL.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):519-524. doi: 10.1073/pnas.1716168115. Epub 2018 Jan 2.
8
Revisiting the GroEL-GroES reaction cycle via the symmetric intermediate implied by novel aspects of the GroEL(D398A) mutant.
J Biol Chem. 2008 Aug 29;283(35):23774-81. doi: 10.1074/jbc.M802542200. Epub 2008 Jun 20.
10
Leu309 plays a critical role in the encapsulation of substrate protein into the internal cavity of GroEL.
J Biol Chem. 2006 Jan 13;281(2):962-7. doi: 10.1074/jbc.M506298200. Epub 2005 Oct 20.

引用本文的文献

1
Insights into the client protein release mechanism of the ATP-independent chaperone Spy.
Nat Commun. 2022 May 20;13(1):2818. doi: 10.1038/s41467-022-30499-x.
2
Increased surface charge in the protein chaperone Spy enhances its anti-aggregation activity.
J Biol Chem. 2020 Oct 16;295(42):14488-14500. doi: 10.1074/jbc.RA119.012300. Epub 2020 Aug 17.
3
Hydrophobic residues of melittin mediate its binding to αA-crystallin.
Protein Sci. 2020 Feb;29(2):572-588. doi: 10.1002/pro.3792. Epub 2019 Dec 18.
4
Inorganic polyphosphate, a multifunctional polyanionic protein scaffold.
J Biol Chem. 2019 Feb 8;294(6):2180-2190. doi: 10.1074/jbc.REV118.002808. Epub 2018 Nov 13.
5
Sequence features governing aggregation or degradation of prion-like proteins.
PLoS Genet. 2018 Jul 13;14(7):e1007517. doi: 10.1371/journal.pgen.1007517. eCollection 2018 Jul.
6
Formation of the chaperonin complex studied by 2D NMR spectroscopy.
PLoS One. 2017 Oct 23;12(10):e0187022. doi: 10.1371/journal.pone.0187022. eCollection 2017.
7
How do chaperonins fold protein?
Biophysics (Nagoya-shi). 2015 Apr 1;11:93-102. doi: 10.2142/biophysics.11.93. eCollection 2015.
8
Forces Driving Chaperone Action.
Cell. 2016 Jul 14;166(2):369-379. doi: 10.1016/j.cell.2016.05.054. Epub 2016 Jun 9.
9
Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding.
PLoS Comput Biol. 2015 Sep 22;11(9):e1004496. doi: 10.1371/journal.pcbi.1004496. eCollection 2015.
10
Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants.
Protein Sci. 2014 Jun;23(6):693-702. doi: 10.1002/pro.2452. Epub 2014 Apr 5.

本文引用的文献

1
Use of a water flip-back pulse in the homonuclear NOESY experiment.
J Biomol NMR. 1995 Apr;5(3):327-31. doi: 10.1007/BF00211762.
2
Folding trajectories of human dihydrofolate reductase inside the GroEL GroES chaperonin cavity and free in solution.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20788-92. doi: 10.1073/pnas.0710042105. Epub 2007 Dec 19.
3
Topologies of a substrate protein bound to the chaperonin GroEL.
Mol Cell. 2007 May 11;26(3):415-26. doi: 10.1016/j.molcel.2007.04.004.
4
GroEL-mediated protein folding: making the impossible, possible.
Crit Rev Biochem Mol Biol. 2006 Jul-Aug;41(4):211-39. doi: 10.1080/10409230600760382.
5
GroEL-GroES-mediated protein folding.
Chem Rev. 2006 May;106(5):1917-30. doi: 10.1021/cr040435v.
6
Direct NMR observation of a substrate protein bound to the chaperonin GroEL.
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12748-53. doi: 10.1073/pnas.0505642102. Epub 2005 Aug 22.
7
Chaperonin-mediated protein folding: fate of substrate polypeptide.
Q Rev Biophys. 2003 May;36(2):229-56. doi: 10.1017/s0033583503003883.
8
Domain motions in GroEL upon binding of an oligopeptide.
J Mol Biol. 2003 Nov 28;334(3):489-99. doi: 10.1016/j.jmb.2003.09.074.
9
The chaperonin folding machine.
Trends Biochem Sci. 2002 Dec;27(12):627-32. doi: 10.1016/s0968-0004(02)02211-9.
10
Chaperonin-mediated protein folding.
Annu Rev Biophys Biomol Struct. 2001;30:245-69. doi: 10.1146/annurev.biophys.30.1.245.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验