Suppr超能文献

用于多囊卵巢综合征诊断和风险分层的蛋白质组学生物标志物:一项系统评价

Proteomic biomarkers for the diagnosis and risk stratification of polycystic ovary syndrome: a systematic review.

作者信息

Atiomo W, Khalid S, Parameshweran S, Houda M, Layfield R

机构信息

Department of Obstetrics and Gynaecology, School of Human Development, University of Nottingham, and Nottingham University Hospitals, Nottingham, UK.

出版信息

BJOG. 2009 Jan;116(2):137-43. doi: 10.1111/j.1471-0528.2008.02041.x.

Abstract

BACKGROUND

The exact causes of polycystic ovary syndrome (PCOS) are uncertain, and treatment could be improved. Discovery-based approaches like 'proteomics' may result in faster insights into the causes of PCOS and improved treatment.

OBJECTIVES

To identify the number and nature of proteomic biomarkers found in PCOS so far and to identify their diagnostic and therapeutic potential.

SEARCH STRATEGY

All published studies on proteomic biomarkers in women with PCOS identified through the MEDLINE (1966-2008), EMBASE (1980-2008) and the ISI web of knowledge (v4.2) databases.

SELECTION CRITERIA

The terms 'polycystic ovary syndrome' and 'proteomic', 'proteomics', 'proteomic biomarker' or 'proteomics biomarker' without any limits/restrictions were used.

DATA COLLECTION AND ANALYSIS

Original data were abstracted where available and summarised on a separate Microsoft Excel (2007) database for analysis.

MAIN RESULTS

Seventeen articles were identified, of which 6 original papers and 1 review article contained original data. Tissues investigated included serum, omental biopsies, ovarian biopsies, follicular fluid and T lymphocytes. Sample sizes ranged from 3 to 30 women. One hundred and forty-eight biomarkers were identified. The biomarkers were involved in many pathways, for example the regulation of fibrinolysis and thrombosis, insulin resistance, immunity/inflammation and the antioxidant pathway. Eleven groups of biomarkers appeared to be independently validated. The individual sensitivities for the diagnosis of PCOS were reported for 11 named biomarkers and ranged from 57 to 100%.

AUTHOR'S CONCLUSIONS: Proteomic biomarker discovery in PCOS offers great potential. Current challenges include reproducibility and data analysis. The establishment of a PCOS-specific biomarker data bank and international consensus on the framework of systematic reviews in this field are required.

摘要

背景

多囊卵巢综合征(PCOS)的确切病因尚不确定,治疗方法有待改进。像“蛋白质组学”这样基于发现的方法可能会更快地洞察PCOS的病因并改善治疗。

目的

确定迄今为止在PCOS中发现的蛋白质组学生物标志物的数量和性质,并确定其诊断和治疗潜力。

检索策略

通过MEDLINE(1966 - 2008年)、EMBASE(1980 - 2008年)和ISI知识网络(第4.2版)数据库检索已发表的关于PCOS女性蛋白质组学生物标志物的所有研究。

选择标准

使用“多囊卵巢综合征”和“蛋白质组学”“蛋白质组”“蛋白质组学生物标志物”或“蛋白质组学标志物”等术语,无任何限制。

数据收集与分析

如有可用的原始数据,则进行提取并汇总到一个单独的Microsoft Excel(2007)数据库中进行分析。

主要结果

共识别出17篇文章,其中6篇原始论文和1篇综述文章包含原始数据。研究的组织包括血清、网膜活检组织、卵巢活检组织、卵泡液和T淋巴细胞。样本量从3名到30名女性不等。共识别出148种生物标志物。这些生物标志物涉及许多途径,例如纤维蛋白溶解和血栓形成的调节、胰岛素抵抗、免疫/炎症和抗氧化途径。11组生物标志物似乎得到了独立验证。报告了11种命名生物标志物诊断PCOS的个体敏感性,范围从57%到100%。

作者结论

在PCOS中发现蛋白质组学生物标志物具有巨大潜力。当前的挑战包括可重复性和数据分析。需要建立一个PCOS特异性生物标志物数据库,并就该领域系统评价的框架达成国际共识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验