Suppr超能文献

在高风险生物制品首次人体试验中使用药代动力学/药效学模型进行起始剂量选择。

Use of pharmacokinetic/ pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics.

作者信息

Agoram Balaji M

机构信息

Department of Clinical Pharmacology, Pfizer Inc., Ramsgate Road, Sandwich, UK.

出版信息

Br J Clin Pharmacol. 2009 Feb;67(2):153-60. doi: 10.1111/j.1365-2125.2008.03297.x. Epub 2008 Dec 11.

Abstract

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

Recent regulatory guidance has highlighted the importance of using pharmacokinetic-pharmacodynamic (PK-PD) modelling in the selection of starting doses in first-in-human trials of high-risk biologics. However, limited examples exist in literature illustrating this procedure.

WHAT THIS STUDY ADDS

An interpretation of the recommended dose-selection methodology and the minimum anticipated biological effect level (MABEL) principle, contained in the updated European Medicines Agency guidance on risk-mitigation strategies for first-in-human studies, is presented. Some literature and simulation-based examples of the application of PK-PD modelling principles to starting dose selection using in vitro and in vivo data under the MABEL paradigm are highlighted, along with the advantages and limitations of this approach.

AIMS

To illustrate the use of pharmacokinetic-pharmacodynamic (PK-PD) models to select rational starting doses in clinical trials within the minimum anticipated biological effect level (MABEL) principle using literature data and through simulations.

METHODS

The new European Medicines Agency guidance on starting dose selection of high-risk biologics was analysed considering the basic pharmacological properties and preclinical testing limitations of many biologics. The MABEL approach to dose selection was illustrated through simulations and through literature-reported examples on the selection of starting doses for biologics such as antibodies based on in vitro biomarker data, in vivo PK and PK-PD data.

RESULTS

Literature reports indicating the use of preclinical pharmacological and toxicological data to select successfully safe starting doses in line with the MABEL principle are summarized. PK-PD model-based simulations of receptor occupancy for an anti-IgE antibody system indicate that the relative abundance of IgE in animal models and patients and the turnover rate of the IgE-antibody complex relative to the off-rate of the antibody from IgE are important determinants of in vivo receptor occupancy.

CONCLUSIONS

Mechanistic PK-PD models are capable of integrating preclinical in vitro and in vivo data to select starting doses rationally in first-in-human trials. Biological drug-receptor interaction dynamics is complex and multiple factors affect the dose-receptor occupancy relationship. Thus, these factors should be taken into account when selecting starting doses.

摘要

关于该主题已有的了解

近期的监管指南强调了在高风险生物制品首次人体试验中使用药代动力学-药效学(PK-PD)模型来选择起始剂量的重要性。然而,文献中说明此程序的示例有限。

本研究的新增内容

对欧洲药品管理局(EMA)关于首次人体研究风险缓解策略的最新指南中推荐的剂量选择方法和最低预期生物学效应水平(MABEL)原则进行了解读。重点介绍了一些基于文献和模拟的PK-PD建模原则在MABEL范式下使用体外和体内数据进行起始剂量选择的示例,以及该方法的优缺点。

目的

利用文献数据并通过模拟,说明如何在最低预期生物学效应水平(MABEL)原则下,使用药代动力学-药效学(PK-PD)模型在临床试验中选择合理的起始剂量。

方法

考虑到许多生物制品的基本药理学特性和临床前测试的局限性,对EMA关于高风险生物制品起始剂量选择的新指南进行了分析。通过模拟以及文献报道的基于体外生物标志物数据、体内药代动力学(PK)和PK-PD数据选择生物制品(如抗体)起始剂量的示例,阐述了MABEL剂量选择方法。

结果

总结了表明使用临床前药理学和毒理学数据成功按照MABEL原则选择安全起始剂量的文献报告。基于PK-PD模型对抗IgE抗体系统的受体占有率进行的模拟表明,动物模型和患者体内IgE的相对丰度以及IgE-抗体复合物的周转率相对于抗体从IgE上的解离速率是体内受体占有率的重要决定因素。

结论

机制性PK-PD模型能够整合临床前体外和体内数据,在首次人体试验中合理选择起始剂量。生物药物-受体相互作用动力学复杂,多种因素影响剂量-受体占有率关系。因此,在选择起始剂量时应考虑这些因素。

相似文献

1
Use of pharmacokinetic/ pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics.
Br J Clin Pharmacol. 2009 Feb;67(2):153-60. doi: 10.1111/j.1365-2125.2008.03297.x. Epub 2008 Dec 11.
2
The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies.
Curr Opin Biotechnol. 2009 Dec;20(6):722-9. doi: 10.1016/j.copbio.2009.10.013. Epub 2009 Nov 5.
7
Biomarkers, validation and pharmacokinetic-pharmacodynamic modelling.
Clin Pharmacokinet. 2003;42(12):997-1022. doi: 10.2165/00003088-200342120-00001.

引用本文的文献

1
Intranasal diamorphine population pharmacokinetics modeling and simulation in pediatric breakthrough pain.
CPT Pharmacometrics Syst Pharmacol. 2025 Mar;14(3):435-447. doi: 10.1002/psp4.13186. Epub 2025 Feb 13.
2
Exposure-Response Modeling and Simulation to Support Human Dosing of Botulism Antitoxin Heptavalent Product.
Clin Pharmacol Ther. 2022 Jul;112(1):171-180. doi: 10.1002/cpt.2620. Epub 2022 May 16.
3
Comparison of Various Approaches to Translate Non-Linear Pharmacokinetics of Monoclonal Antibodies from Cynomolgus Monkey to Human.
Eur J Drug Metab Pharmacokinet. 2021 Jul;46(4):555-567. doi: 10.1007/s13318-021-00691-3. Epub 2021 Jun 13.
4
5
Which factors matter the most? Revisiting and dissecting antibody therapeutic doses.
Drug Discov Today. 2021 Aug;26(8):1980-1990. doi: 10.1016/j.drudis.2021.04.022. Epub 2021 Apr 22.
6
Quantifying PD-L1 Expression to Monitor Immune Checkpoint Therapy: Opportunities and Challenges.
Cancers (Basel). 2020 Oct 29;12(11):3173. doi: 10.3390/cancers12113173.
7
A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo.
iScience. 2019 May 31;15:439-451. doi: 10.1016/j.isci.2019.05.003. Epub 2019 May 8.
9
Peptide-based PET quantifies target engagement of PD-L1 therapeutics.
J Clin Invest. 2019 Feb 1;129(2):616-630. doi: 10.1172/JCI122216. Epub 2019 Jan 7.
10
Design and Conduct Considerations for First-in-Human Trials.
Clin Transl Sci. 2019 Jan;12(1):6-19. doi: 10.1111/cts.12582. Epub 2018 Aug 24.

本文引用的文献

2
Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody.
AAPS J. 2008 Jun;10(2):425-30. doi: 10.1208/s12248-008-9045-4. Epub 2008 Aug 7.
3
The role of mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modelling in translational research of biologics.
Drug Discov Today. 2007 Dec;12(23-24):1018-24. doi: 10.1016/j.drudis.2007.10.002. Epub 2007 Nov 19.
5
Should we tolerate tolerability as an objective in early drug development?
Br J Clin Pharmacol. 2007 Sep;64(3):249-52. doi: 10.1111/j.1365-2125.2007.03023.x.
7
Preclinical and clinical safety of monoclonal antibodies.
Drug Discov Today. 2007 Jul;12(13-14):540-7. doi: 10.1016/j.drudis.2007.05.010. Epub 2007 Jun 27.
8
Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man.
Pharm Res. 2007 Nov;24(11):2031-9. doi: 10.1007/s11095-007-9336-y. Epub 2007 May 31.
9
Technology insight: cytotoxic drug immunoconjugates for cancer therapy.
Nat Clin Pract Oncol. 2007 Apr;4(4):245-55. doi: 10.1038/ncponc0774.
10
Anti-IgE antibodies for the treatment of IgE-mediated allergic diseases.
Adv Immunol. 2007;93:63-119. doi: 10.1016/S0065-2776(06)93002-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验