Galand Pierre E, Lovejoy Connie, Hamilton Andrew K, Ingram R Grant, Pedneault Estelle, Carmack Eddy C
Département de Biologie et Québec-Océan, Université Laval, Québec G1K 7P4, Canada.
Environ Microbiol. 2009 Apr;11(4):971-80. doi: 10.1111/j.1462-2920.2008.01822.x. Epub 2008 Dec 10.
Evidence of microbial zonation in the open ocean is rapidly accumulating, but while the distribution of communities is often described according to depth, the other physical factors structuring microbial diversity and function remain poorly understood. Here we identify three different water masses in the North Water (eastern Canadian Arctic), defined by distinct temperature and salinity characteristics, and show that they contained distinct archaeal communities. Moreover, we found that one of the water masses contained an increased abundance of the archaeal alpha-subunit of the ammonia monooxygenase gene (amoA) and accounted for 70% of the amoA gene detected overall. This indicates likely differences in putative biogeochemical capacities among different water masses. The ensemble of our results strongly suggest that the widely accepted view of depth stratification did not explain microbial diversity, but rather that parent water masses provide the framework for predicting communities and potential microbial function in an Arctic marine system. Our results emphasize that microbial distributions are strongly influenced by oceanic circulation, implying that shifting currents and water mass boundaries resulting from climate change may well impact patterns of microbial diversity by displacing whole biomes from their historic distributions. This relocation could have the potential to establish a substantially different geography of microbial-driven biogeochemical processes and associated oceanic production.
公海中微生物分区的证据正在迅速积累,但尽管群落分布通常是根据深度来描述的,但构成微生物多样性和功能的其他物理因素仍知之甚少。在这里,我们在北水(加拿大北极东部)中识别出三种不同的水体,它们由不同的温度和盐度特征定义,并表明它们含有不同的古菌群落。此外,我们发现其中一个水体中氨单加氧酶基因(amoA)的古菌α亚基丰度增加,占总体检测到的amoA基因的70%。这表明不同水体之间在假定的生物地球化学能力上可能存在差异。我们的研究结果总体上有力地表明,广为接受的深度分层观点并不能解释微生物多样性,而是母水体为预测北极海洋系统中的群落和潜在微生物功能提供了框架。我们的结果强调,微生物分布受到海洋环流的强烈影响,这意味着气候变化导致的洋流和水体边界变化很可能通过将整个生物群落从其历史分布中转移而影响微生物多样性模式。这种重新分布有可能建立一个截然不同的由微生物驱动的生物地球化学过程和相关海洋生产的地理格局。