Suppr超能文献

Expression and characterization of human factor IX. Factor IXthr-397 and factor IXval-397.

作者信息

Hamaguchi N, Charifson P S, Pedersen L G, Brayer G D, Smith K J, Stafford D W

机构信息

Department of Biology, University of North Carolina, Chapel Hill 27514.

出版信息

J Biol Chem. 1991 Aug 15;266(23):15213-20.

PMID:1907972
Abstract

Factor IXLong Beach has a single amino acid substitution at 397 (Ile to Thr) in the catalytic domain which results in severe hemophilia B. Recent investigations have shown that the substitution of threonine for isoleucine at 397 may affect a part of the macromolecular substrate binding site. Because threonine has a hydroxyl group in its side chain, it is possible that this hydroxyl group makes new hydrogen bonds and disturbs the substrate binding site. We used three techniques: molecular biology, which includes site-directed mutagenesis and recombinant protein expression in tissue culture; computer-aided kinetic data analysis; and molecular modeling to study this mutation site. We have produced two mutant factor IX molecules that have isoleucine 397 replaced by valine or threonine. Factor IXwild type and the two mutants (factor IXVal and factor IXThr) were expressed in human kidney cells and purified using a conformation-specific monoclonal antibody column. After the activation by factor XIa, these three molecules were able to bind p-aminobenzamidine and increase its fluorescence intensity in a similar manner. Factor IXVal and factor IXwild type had indistinguishable activities in an activated partial thromboplastin time (aPTT) assay and similar kinetic parameters with factor X as a substrate. Factor IXThr had only 5% clotting activity compared with normal factor IX, a slightly lower Km and significantly reduced kcat, using factor X as a substrate. We developed energy-refined (AMBER v.3.1) computer models of the three factor IX molecules based on previous work. Three factor IXa models (Ile, Val, or Thr at 397) with a fragment of the factor X activation site were used to predict the effect of the mutation at 397 and evaluate the significance of the new hydrogen bond thought to form between the side chain hydroxyl group of threonine 397 and the carbonyl oxygen of tryptophan 385. This new hydrogen bond would affect the position of an amide proton of adjacent glycine 386 which has been proposed to make a hydrogen bond with a backbone carbonyl oxygen of the P3 residue of factor X. In addition to the new hydrogen bond, there is significant movement in the side chain of tryptophan 385 between the factor IXawild type-factor X model and the factor IXaThr-factor X model that could interfere with substrate binding. This movement could be caused by the change in the molecular volume, the orientation of the side chain at 397, and the new hydrogen bond.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验