Cavalcanti M G S, Araújo H R C, Paiva M H S, Silva G M, Barbosa C C G S, Silva L F, Brayner F A, Alves L C
Departamento de Parasitologia, Centro de Pesquisas Aggeu Magalhães, Recife - PE, Brazil.
Micron. 2009 Apr;40(3):394-400. doi: 10.1016/j.micron.2008.09.006. Epub 2008 Oct 8.
An alternative to identify the critical processes necessary to the parasite establishment of the host is to focus on the evolutionary stage responsible for the primary invasion, i.e. the infection structure. The objective of this study was to ultrastructurally characterize Schistosoma mansoni cercariae, using cytochemical techniques. In order to identify basic proteins, techniques such as ethanolic phosphotungstic acid (EPTA) and ammoniacal silver staining were used. Calcium sites location was achieved using the Hepler technique and to evidence anionic groups, we used cationic ferritin particles and enzyme treatment with trypsin Vibrio cholerae, chondroitinase and neuraminidase. The EPTA technique highlighted the presence of basic tegument proteins, nucleus and nucleolus from subtegumental cells, inclusion bodies and preacetabular glands. After using ammoniacal silver, we observed a strong staining in all infective larvae, particularly in the nuclei of muscle cells, circular muscle tissue and preacetabular glands. Calcium site locations were shown to be uniform, thereby limiting the inner spaces of the larvae, especially muscle cells. Samples treated with cationized ferritin particles presented strong staining at the cuticular level. Neuraminidase treatment did not alter the stained shape of such particles on the trematode surface. However, trypsin or chondroitinase treatment resulted in absence of staining on the larval surface. This information on the biochemical composition of the infecting S. mansoni larvae provides data for a better understanding of the biology of this parasite and background on the intriguing parasite-host relationship.
识别宿主寄生虫建立所必需的关键过程的另一种方法是关注负责初次入侵的进化阶段,即感染结构。本研究的目的是使用细胞化学技术对曼氏血吸虫尾蚴进行超微结构表征。为了识别碱性蛋白质,使用了乙醇磷钨酸(EPTA)和氨性银染色等技术。使用赫普勒技术确定钙位点的位置,为了证明阴离子基团的存在,我们使用了阳离子铁蛋白颗粒以及用霍乱弧菌胰蛋白酶、软骨素酶和神经氨酸酶进行酶处理。EPTA技术突出显示了碱性皮层蛋白、皮层下细胞的细胞核和核仁、包涵体和前吸盘腺的存在。使用氨性银后,我们观察到所有感染性幼虫都有强烈染色,特别是在肌肉细胞、环肌组织和前吸盘腺的细胞核中。钙位点的位置显示是均匀的,从而限制了幼虫的内部空间,尤其是肌肉细胞。用阳离子化铁蛋白颗粒处理的样本在表皮水平呈现强烈染色。神经氨酸酶处理并未改变吸虫表面此类颗粒的染色形状。然而,胰蛋白酶或软骨素酶处理导致幼虫表面无染色。关于感染性曼氏血吸虫幼虫生化组成的这些信息为更好地理解这种寄生虫的生物学以及有趣的寄生虫-宿主关系提供了数据。