Suppr超能文献

140吉赫兹长脉冲回旋管的光谱特性

Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron.

作者信息

Han Seong-Tae, Griffin Robert G, Hu Kan-Nian, Joo Chan-Gyu, Joye Colin D, Sirigiri Jagadishwar R, Temkin Richard J, Torrezan Antonio C, Woskov Paul P

机构信息

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139-4294 USA.

出版信息

IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2007 Jun;35(3):559-564. doi: 10.1109/TPS.2007.896931.

Abstract

Gyrotrons operating in the millimeter and submillimeter wavelength ranges are the promising sources for applications that are requiring good spectral characteristics and a wide range of output power. We report the precise measurement results of gyrotron spectra. Experiments were conducted using a 140-GHz long-pulse gyrotron that is developed for the dynamic nuclear polarization/nuclear-magnetic-resonance spectroscopy at the Massachusetts Institute of Technology. Transient downshift of the frequency by 12 MHz with a time constant of 3 s was observed. After reaching equilibrium, the frequency was maintained within 1 ppm for over 20 s. The coefficient of the frequency change with cavity temperature was -2.0 MHz/K, which shows that fine tuning of the gyrotron frequency is plausible by cavity-temperature control. Frequency pulling by the beam current was observed, but it was shown to be masked by the downward shift of the gyrotron frequency with temperature. The linewidth was measured to be much less than 1 MHz at 60 dB relative to the carrier power [in decibels relative to carrier (dBc)] and 4.3 MHz at 75 dBc, which is the largest dynamic range to date for the measurement of gyrotron linewidth to our knowledge.

摘要

工作在毫米和亚毫米波长范围内的回旋管是那些需要良好光谱特性和宽输出功率范围的应用的有前途的源。我们报告了回旋管光谱的精确测量结果。实验使用了一台为麻省理工学院的动态核极化/核磁共振光谱学开发的140 GHz长脉冲回旋管进行。观察到频率有12 MHz的瞬态下移,时间常数为3 s。达到平衡后,频率在超过20 s的时间内保持在1 ppm以内。频率随腔温度的变化系数为-2.0 MHz/K,这表明通过控制腔温度对回旋管频率进行微调是可行的。观察到了束流引起的频率牵引,但结果表明它被回旋管频率随温度的下移所掩盖。在相对于载波功率为60 dB [相对于载波的分贝数(dBc)]时,测得线宽远小于1 MHz,在75 dBc时为4.3 MHz,据我们所知,这是迄今为止测量回旋管线宽的最大动态范围。

相似文献

1
Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2007 Jun;35(3):559-564. doi: 10.1109/TPS.2007.896931.
3
Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2010 Jun 1;38(6):1150-1160. doi: 10.1109/TPS.2010.2046617.
4
Continuous-wave Submillimeter-wave Gyrotrons.
Proc SPIE Int Soc Opt Eng. 2006;6373:63730C. doi: 10.1117/12.686436.
5
250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR.
J Magn Reson. 2007 Dec;189(2):251-79. doi: 10.1016/j.jmr.2007.09.013. Epub 2007 Sep 20.
7
Second Harmonic 527-GHz Gyrotron for DNP-NMR: Design and Experimental Results.
IEEE Trans Electron Devices. 2020 Jan;67(1):328-334. doi: 10.1109/ted.2019.2953658. Epub 2019 Dec 10.
8
Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):524-533. doi: 10.1109/TPS.2006.875769.
9
Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy.
J Infrared Millim Terahertz Waves. 2013 Jan 1;34(1):42-52. doi: 10.1007/s10762-012-9947-1. Epub 2012 Nov 15.
10
A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.
J Magn Reson. 2012 Aug;221:147-53. doi: 10.1016/j.jmr.2012.03.014. Epub 2012 Mar 29.

引用本文的文献

1
Frequency-swept dynamic nuclear polarization.
J Magn Reson. 2023 Aug;353:107511. doi: 10.1016/j.jmr.2023.107511. Epub 2023 Jun 20.
2
Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Oct;45(10):2835-2840. doi: 10.1109/TPS.2017.2740619. Epub 2017 Oct 5.
3
Theory of Linear and Nonlinear Gain in a Gyroamplifier using a Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Sep;45(9):2438-2449. doi: 10.1109/TPS.2017.2726683. Epub 2017 Aug 22.
4
Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy.
J Infrared Millim Terahertz Waves. 2013 Jan 1;34(1):42-52. doi: 10.1007/s10762-012-9947-1. Epub 2012 Nov 15.
5
A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.
J Magn Reson. 2012 Aug;221:147-53. doi: 10.1016/j.jmr.2012.03.014. Epub 2012 Mar 29.
6
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5850-60. doi: 10.1039/c003685b. Epub 2010 May 7.
7
Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
IEEE Trans Electron Devices. 2009 May 1;56(5):818-827. doi: 10.1109/TED.2009.2015802.

本文引用的文献

1
250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR.
J Magn Reson. 2007 Dec;189(2):251-79. doi: 10.1016/j.jmr.2007.09.013. Epub 2007 Sep 20.
2
Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):524-533. doi: 10.1109/TPS.2006.875769.
3
Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):518-523. doi: 10.1109/TPS.2006.875776.
4
Dynamic nuclear polarization at 9T using a novel 250GHz gyrotron microwave source.
J Magn Reson. 2003 Feb;160(2):85-90. doi: 10.1016/s1090-7807(02)00192-1.
5
Dynamic nuclear polarization with a cyclotron resonance maser at 5 T.
Phys Rev Lett. 1993 Nov 22;71(21):3561-3564. doi: 10.1103/PhysRevLett.71.3561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验