Suppr超能文献

460吉赫兹二次谐波回旋管振荡器的连续波运行

Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator.

作者信息

Hornstein Melissa K, Bajaj Vikram S, Griffin Robert G, Temkin Richard J

机构信息

M. K. Hornstein was with the Department of Electrical Engineering and Computer Science and the Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA. She is now with the Naval Research Laboratory, Washington, DC 20375 USA (e-mail:

出版信息

IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):524-533. doi: 10.1109/TPS.2006.875769.

Abstract

We report the regulated continuous-wave (CW) operation of a second harmonic gyrotron oscillator at output power levels of over 8 W (12.4 kV and 135 mA beam voltage and current) in the TE(0,6,1) mode near 460 GHz. The gyrotron also operates in the second harmonic TE(2,6,1) mode at 456 GHz and in the TE(2,3,1) fundamental mode at 233 GHz. CW operation was demonstrated for a one-hour period in the TE(0,6,1) mode with better than 1% power stability, where the power was regulated using feedback control. Nonlinear simulations of the gyrotron operation agree with the experimentally measured output power and radio-frequency (RF) efficiency when cavity ohmic losses are included in the analysis. The output radiation pattern was measured using a pyroelectric camera and is highly Gaussian, with an ellipticity of 4%. The 460-GHz gyrotron will serve as a millimeter-wave source for sensitivity-enhanced nuclear magnetic resonance (dynamic nuclear polarization) experiments at a magnetic field of 16.4 T.

摘要

我们报告了一种二次谐波回旋管振荡器的稳定连续波(CW)运行情况,其在460GHz附近的TE(0,6,1)模式下输出功率超过8W(束电压12.4kV,束电流135mA)。该回旋管还能在456GHz的二次谐波TE(2,6,1)模式以及233GHz的TE(2,3,1)基模下运行。在TE(通过反馈控制调节功率,在TE(0,6,1)模式下实现了一小时的连续波运行,功率稳定性优于1%。当分析中考虑腔欧姆损耗时,回旋管运行的非线性模拟结果与实验测量的输出功率和射频(RF)效率相符。使用热释电相机测量了输出辐射方向图,其呈高度高斯分布,椭圆率为4%。这台460GHz的回旋管将作为毫米波源,用于在16.4T磁场下进行灵敏度增强的核磁共振(动态核极化)实验。

相似文献

1
Continuous-Wave Operation of a 460-GHz Second Harmonic Gyrotron Oscillator.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):524-533. doi: 10.1109/TPS.2006.875769.
2
Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2010 Jun 1;38(6):1150-1160. doi: 10.1109/TPS.2010.2046617.
4
Efficient Low-Voltage Operation of a CW Gyrotron Oscillator at 233 GHz.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2007 Feb;35(1):27-30. doi: 10.1109/TPS.2006.889295.
5
Second Harmonic 527-GHz Gyrotron for DNP-NMR: Design and Experimental Results.
IEEE Trans Electron Devices. 2020 Jan;67(1):328-334. doi: 10.1109/ted.2019.2953658. Epub 2019 Dec 10.
6
Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):518-523. doi: 10.1109/TPS.2006.875776.
7
250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR.
J Magn Reson. 2007 Dec;189(2):251-79. doi: 10.1016/j.jmr.2007.09.013. Epub 2007 Sep 20.
9
A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.
J Magn Reson. 2012 Aug;221:147-53. doi: 10.1016/j.jmr.2012.03.014. Epub 2012 Mar 29.

引用本文的文献

1
Biradical Polarizing Agents at High Fields.
J Phys Chem B. 2022 Oct 13;126(40):7847-7856. doi: 10.1021/acs.jpcb.2c03985. Epub 2022 Oct 4.
3
Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Oct;45(10):2835-2840. doi: 10.1109/TPS.2017.2740619. Epub 2017 Oct 5.
4
Theory of Linear and Nonlinear Gain in a Gyroamplifier using a Confocal Waveguide.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2017 Sep;45(9):2438-2449. doi: 10.1109/TPS.2017.2726683. Epub 2017 Aug 22.
6
THz Dynamic Nuclear Polarization NMR.
IEEE Trans Terahertz Sci Technol. 2011 Aug 29;1(1):145-163. doi: 10.1109/TTHZ.2011.2159546.
8
Simplified THz Instrumentation for High-Field DNP-NMR Spectroscopy.
Appl Magn Reson. 2012 Jul 1;43(1-2):181-94. doi: 10.1007/s00723-012-0360-7.
9
Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids.
Solid State Nucl Magn Reson. 2011 Sep;40(2):31-41. doi: 10.1016/j.ssnmr.2011.08.001. Epub 2011 Aug 6.
10
Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2010 Jun 1;38(6):1150-1160. doi: 10.1109/TPS.2010.2046617.

本文引用的文献

1
250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR.
J Magn Reson. 2007 Dec;189(2):251-79. doi: 10.1016/j.jmr.2007.09.013. Epub 2007 Sep 20.
2
Operational Characteristics of a 14-W 140-GHz Gyrotron for Dynamic Nuclear Polarization.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc. 2006 Jun;34(3):518-523. doi: 10.1109/TPS.2006.875776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验