Suppr超能文献

具有各种苷元对取代基的硫代芳基糖苷:一种用于研究化学糖基化反应的探针。

Thio-arylglycosides with various aglycon para-substituents: a probe for studying chemical glycosylation reactions.

作者信息

Li Xiaoning, Huang Lijun, Hu Xiche, Huang Xuefei

机构信息

Department of Chemistry, The University of Toledo, 2801 W. Bancroft Street, MS 602, Toledo, OH 43606.

出版信息

Org Biomol Chem. 2009 Jan 7;7(1):117-27. doi: 10.1039/b813048e. Epub 2008 Oct 20.

Abstract

Three series of thioglycosyl donors differing only in their respective aglycon substituents within each series have been prepared as representatives of typical glycosyl donors. The relative anomeric reactivities of these donors were quantified under competitive glycosylation conditions with various reaction time, promoters, solvents and acceptors. Over three orders of magnitude reactivity difference were generated by simple transformation of the para-substituent on the aglycon with methanol as the acceptor, while chemoselectivities became lower with carbohydrate acceptors. Excellent linear correlations were attained between relative reactivity values of donors and sigma(p) values of the substituents in the Hammett plots. This indicates that the glycosylation mechanism remains the same over a wide range of reactivities and glycosylation conditions. The negative slopes of the Hammett plots suggested that electron donating substituents expedite the reactions and the magnitudes of slopes can be rationalized by neighboring group participation as well as electronic properties of the glycon protective groups. Within the same series of donors, less nucleophilic acceptors gave smaller slopes in their Hammett plots. This is consistent with the notion that acceptor nucleophilic attack onto the reactive intermediate is part of the rate limiting step of the glycosylation reaction.

摘要

已制备了三组硫代糖基供体,每组内仅其各自的苷元取代基不同,作为典型糖基供体的代表。在不同反应时间、促进剂、溶剂和受体的竞争性糖基化条件下,对这些供体的相对端基异构反应活性进行了定量。以甲醇为受体,通过简单改变苷元上的对取代基,产生了超过三个数量级的反应活性差异,而对于糖类受体,化学选择性则较低。在哈米特图中,供体的相对反应活性值与取代基的σ(p)值之间获得了良好的线性相关性。这表明在广泛的反应活性和糖基化条件下,糖基化机制保持不变。哈米特图的负斜率表明供电子取代基加速了反应,并且斜率的大小可以通过邻基参与以及糖苷保护基的电子性质来解释。在同一组供体中,亲核性较低的受体在其哈米特图中的斜率较小。这与受体对反应中间体的亲核攻击是糖基化反应限速步骤的一部分这一观点一致。

相似文献

1
Thio-arylglycosides with various aglycon para-substituents: a probe for studying chemical glycosylation reactions.
Org Biomol Chem. 2009 Jan 7;7(1):117-27. doi: 10.1039/b813048e. Epub 2008 Oct 20.
4
Aglycon reactivity as a guiding principle in latent-active approach to chemical glycosylations.
Carbohydr Res. 2021 Oct;508:108404. doi: 10.1016/j.carres.2021.108404. Epub 2021 Jul 29.
7
Glycosyl alkoxythioimidates as building blocks for glycosylation: a reactivity study.
Carbohydr Res. 2015 Feb 11;403:115-22. doi: 10.1016/j.carres.2014.06.025. Epub 2014 Jun 30.
8
Selective electrochemical glycosylation by reactivity tuning.
Org Biomol Chem. 2004 Aug 7;2(15):2195-202. doi: 10.1039/b316728c. Epub 2004 Jul 9.
9
Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.
Acc Chem Res. 2016 Jan 19;49(1):35-47. doi: 10.1021/acs.accounts.5b00357. Epub 2015 Nov 2.
10
Plausible Transition States for glycosylation reactions.
Carbohydr Res. 2012 Jul 15;356:180-90. doi: 10.1016/j.carres.2012.03.040. Epub 2012 Apr 6.

引用本文的文献

1
Mild and Effective Method for the Nickel-Catalyzed Arylation of Glycosyl Thiols in Aqueous Surfactant Solution.
J Org Chem. 2024 Dec 6;89(23):17502-17517. doi: 10.1021/acs.joc.4c02233. Epub 2024 Nov 12.
2
Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction.
Sci Adv. 2023 Oct 20;9(42):eadk0531. doi: 10.1126/sciadv.adk0531. Epub 2023 Oct 18.
3
Towards a Systematic Understanding of the Influence of Temperature on Glycosylation Reactions.
Angew Chem Int Ed Engl. 2022 Apr 4;61(15):e202115433. doi: 10.1002/anie.202115433. Epub 2022 Feb 15.
4
Effect of 2--Benzoyl para-Substituents on Glycosylation Rates.
ACS Omega. 2018 Jun 29;3(6):7117-7123. doi: 10.1021/acsomega.8b00880. eCollection 2018 Jun 30.
5
The Experimental Evidence in Support of Glycosylation Mechanisms at the S1-S2 Interface.
Chem Rev. 2018 Sep 12;118(17):8242-8284. doi: 10.1021/acs.chemrev.8b00083. Epub 2018 May 30.
6
Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly.
Beilstein J Org Chem. 2017 Oct 9;13:2094-2114. doi: 10.3762/bjoc.13.207. eCollection 2017.
8
Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000-present.
Adv Carbohydr Chem Biochem. 2012;67:95-136. doi: 10.1016/B978-0-12-396527-1.00003-6.

本文引用的文献

2
Electrochemical generation of glycosyl triflate pools.
J Am Chem Soc. 2007 Sep 5;129(35):10922-8. doi: 10.1021/ja072440x. Epub 2007 Aug 14.
3
Programmable reactivity-based one-pot oligosaccharide synthesis.
Nat Protoc. 2006;1(6):3143-52. doi: 10.1038/nprot.2006.489.
8
Organic azides: an exploding diversity of a unique class of compounds.
Angew Chem Int Ed Engl. 2005 Aug 19;44(33):5188-240. doi: 10.1002/anie.200400657.
9
Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions.
Angew Chem Int Ed Engl. 2005 Jul 11;44(28):4302-20. doi: 10.1002/anie.200462544.
10
Formation and stability of oxocarbenium ions from glycosides.
J Mass Spectrom. 2005 Aug;40(8):1055-63. doi: 10.1002/jms.880.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验