Suppr超能文献

A developed Ullmann reaction to III-V semiconductor nanocrystals in sealed vacuum tubes.

作者信息

Wang Junli, Yang Qing

机构信息

Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China (USTC), Hefei, Anhui 230026, P. R. China.

出版信息

Dalton Trans. 2008 Nov 21(43):6060-6. doi: 10.1039/b809442j. Epub 2008 Sep 25.

Abstract

Group III-V (13-15, III = Ga, In, and V = P, As) semiconductor nanocrystals were effectively obtained via a developed Ullmann reaction route through the reactions of preformed nanoscale metallic indium or commercial gallium with triphenylphosphine (PPh(3)) and triphenylarsine (AsPh(3)) in sealed vacuum quartz tubes under moderate conditions at 320-400 degrees C for 8-24 h. The developed synthetic strategy in sealed vacuum tubes extends the synthesis of III-V semiconductor materials, and the air-stable PPh(3) and AsPh(3) with low toxicity provide good alternative pnicogen precursors for the synthesis of III-V nanocrystals. The analysis of XRD, ED and HRTEM established the production of one-dimensional (1D) metastable wurtzite (W) InP, InAs and GaP nanostructures in the zinc blende (ZB) products. Further investigations showed that 1D W nanostructures resulted from kinetic effects under the moderate synthetic conditions employed and the steric effect of PPh(3) and AsPh(3), and that the tendency for the synthesis of III-V nanocrystals was in the orders of IIIP > IIIAs and GaV > InV on the basis of experiments and thermodynamic calculations. Meanwhile, the microstructures and growth mechanism of the III-V nanocrystals were investigated.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验