Suppr超能文献

言语和空间工作记忆过程中阶段和负荷对事件相关电位地形图的影响。

Stage and load effects on ERP topography during verbal and spatial working memory.

作者信息

Shucard Janet L, Tekok-Kilic Ayda, Shiels Keri, Shucard David W

机构信息

Department of Neurology/Jacobs Neurological Institute, University at Buffalo, State University of New York School of Medicine and Biomedical Sciences, 100 High Street (D-6), Buffalo, New York 14203, USA.

出版信息

Brain Res. 2009 Feb 13;1254:49-62. doi: 10.1016/j.brainres.2008.11.063. Epub 2008 Dec 3.

Abstract

Frontal-parietal neural networks play a significant role in the functional organization of visual working memory (WM). The relative contribution of material-specific information (e.g., verbal or spatial) on activation of WM circuitry is not fully understood. Process-specific models of WM propose that the activation of WM circuitry is more dependent on the stage of WM than on the type of information being processes. This study investigated the effects of WM information type (verbal, spatial), stage (encoding, maintenance), and load on both the anterior-posterior topography and lateralized scalp distributions of the event-related potential (ERP) P3 amplitude. Seventeen young adults performed verbal and spatial tasks that were equated for stimulus properties and response requirements. Both tasks were presented under 1- and 3-load conditions. The anterior-posterior topography of P3 amplitude at left hemisphere, midline, and right hemisphere scalp locations was affected by the stage of WM and the memory load, but not by the type of information. The encoding stage showed minimal load effects and was associated with a posterior-maximum P3 amplitude distribution. During the maintenance stage, probe letters were presented that were irrelevant to the previously encoded stimuli. Here, higher WM load produced relatively greater frontal and reduced parietal P3 amplitude compared to lower WM load. These anterior-posterior P3 amplitude patterns for encoding and maintenance were similar at left, midline, and right locations. Within the limitations of the study, our results tend to support a process-dependent activation of WM circuits in that P3 amplitude topography only differed as a result of WM stage and load, and not as a result of the type of information (verbal or spatial) presented.

摘要

额顶神经网络在视觉工作记忆(WM)的功能组织中发挥着重要作用。物质特异性信息(如言语或空间信息)对WM回路激活的相对贡献尚未完全明确。WM的过程特异性模型提出,WM回路的激活更多地依赖于WM的阶段,而非所处理信息的类型。本研究调查了WM信息类型(言语、空间)、阶段(编码、维持)和负荷对事件相关电位(ERP)P3波幅的前后地形和头皮分布偏侧化的影响。17名年轻成年人执行了在刺激属性和反应要求方面等同的言语和空间任务。两项任务均在1负荷和3负荷条件下呈现。左半球、中线和右半球头皮部位P3波幅的前后地形受WM阶段和记忆负荷的影响,但不受信息类型的影响。编码阶段显示出最小的负荷效应,且与P3波幅分布的后极最大值相关。在维持阶段,呈现与先前编码刺激无关的探测字母。在此,与较低WM负荷相比,较高WM负荷产生相对更大的额部P3波幅和减小的顶叶P3波幅。编码和维持阶段的这些前后P3波幅模式在左、中、右位置相似。在本研究的局限性范围内,我们的结果倾向于支持WM回路的过程依赖性激活,因为P3波幅地形仅因WM阶段和负荷而不同,而非因所呈现信息的类型(言语或空间)不同。

相似文献

1
Stage and load effects on ERP topography during verbal and spatial working memory.
Brain Res. 2009 Feb 13;1254:49-62. doi: 10.1016/j.brainres.2008.11.063. Epub 2008 Dec 3.
2
Working memory load-dependent spatio-temporal activity of single-trial P3 response detected with an adaptive wavelet denoiser.
Neuroscience. 2017 Mar 27;346:64-73. doi: 10.1016/j.neuroscience.2017.01.012. Epub 2017 Jan 17.
3
Interhemispheric Connectivity Supports Load-Dependent Working Memory Maintenance for Complex Visual Stimuli.
Brain Connect. 2022 Dec;12(10):892-904. doi: 10.1089/brain.2021.0171. Epub 2022 Jun 1.
4
The neurodevelopmental differences of increasing verbal working memory demand in children and adults.
Dev Cogn Neurosci. 2016 Feb;17:19-27. doi: 10.1016/j.dcn.2015.10.008. Epub 2015 Nov 5.
5
Determining working memory from ERP topography.
Brain Topogr. 1999 Fall;12(1):39-47. doi: 10.1023/a:1022229623355.
7
The influence of increased working memory load on semantic neural systems: a high-resolution event-related brain potential study.
Brain Res Cogn Brain Res. 2005 Feb;22(2):177-91. doi: 10.1016/j.cogbrainres.2004.08.007.
8
The relationship of aerobic fitness with verbal and spatial working memory: An ERP study.
Prog Brain Res. 2024;286:211-234. doi: 10.1016/bs.pbr.2024.04.003. Epub 2024 May 24.
9
The effects of working memory load on visual awareness and its electrophysiological correlates.
Neuropsychologia. 2018 Nov;120:86-96. doi: 10.1016/j.neuropsychologia.2018.10.011. Epub 2018 Oct 22.
10
Hemispheric lateralization of verbal and spatial working memory during adolescence.
Brain Cogn. 2013 Jun;82(1):58-68. doi: 10.1016/j.bandc.2013.02.007. Epub 2013 Mar 16.

引用本文的文献

1
Working memory components modulation of attentional disengagement from evaluative distractor.
Psych J. 2024 Oct;13(5):717-725. doi: 10.1002/pchj.748. Epub 2024 Mar 26.
2
Multiple mechanisms regulate statistical learning of orthographic regularities in school-age children: Neurophysiological evidence.
Dev Cogn Neurosci. 2023 Feb;59:101190. doi: 10.1016/j.dcn.2022.101190. Epub 2022 Dec 17.
3
A Study on the Intuitive Design of Target Search Tasks under Time and Information Pressure.
Brain Sci. 2022 Oct 28;12(11):1464. doi: 10.3390/brainsci12111464.
4
Response inhibition and memory updating in the count/nocount task: an ERP study.
Exp Brain Res. 2021 Nov;239(11):3371-3380. doi: 10.1007/s00221-021-06213-6. Epub 2021 Sep 7.
5
Hierarchical effects on target detection and conflict monitoring.
Sci Rep. 2016 Aug 26;6:32234. doi: 10.1038/srep32234.
6
Age-related differences in working memory: ERPs reveal age-related delays in selection- and inhibition-related processes.
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2014;21(4):483-513. doi: 10.1080/13825585.2013.833581. Epub 2013 Sep 9.

本文引用的文献

1
Neural mechanisms for learning actions in context.
Brain Res. 2007 Nov 7;1179:89-105. doi: 10.1016/j.brainres.2007.03.092. Epub 2007 Jun 5.
2
Control processes in verbal working memory: an event-related potential study.
Brain Res. 2007 Oct 3;1172:67-81. doi: 10.1016/j.brainres.2007.06.083. Epub 2007 Jul 27.
3
Electrophysiological measures of maintaining representations in visual working memory.
Cortex. 2007 Jan;43(1):77-94. doi: 10.1016/s0010-9452(08)70447-7.
4
Binding of what and where during working memory maintenance.
Cortex. 2007 Jan;43(1):5-21. doi: 10.1016/s0010-9452(08)70442-8.
5
Different activation patterns for working memory load and visual attention load.
Brain Res. 2007 Feb 9;1132(1):158-65. doi: 10.1016/j.brainres.2006.11.030. Epub 2006 Dec 12.
6
The role of inferior parietal and inferior frontal cortex in working memory.
Neuropsychology. 2006 Sep;20(5):529-38. doi: 10.1037/0894-4105.20.5.529.
7
Prefrontal and parietal contributions to spatial working memory.
Neuroscience. 2006 Apr 28;139(1):173-80. doi: 10.1016/j.neuroscience.2005.04.070. Epub 2005 Dec 2.
8
Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory.
Neuroscience. 2006 Apr 28;139(1):317-25. doi: 10.1016/j.neuroscience.2005.05.043. Epub 2005 Dec 1.
9
Working memory as an emergent property of the mind and brain.
Neuroscience. 2006 Apr 28;139(1):23-38. doi: 10.1016/j.neuroscience.2005.06.005. Epub 2005 Dec 1.
10
Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness.
Psychol Sci. 2005 Dec;16(12):965-72. doi: 10.1111/j.1467-9280.2005.01645.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验