Delgado-Escueta Antonio V, Bourgeois Blaise F D
Epilepsy Genetics/Genomics Laboratories, VA Greater Los Angeles Healthcare System, David Geffen School of Medicine at UCLA, West Los Angeles, California 90073, USA.
Epilepsia. 2008 Dec;49 Suppl 9:13-24. doi: 10.1111/j.1528-1167.2008.01922.x.
In the past decade, genotyping has started to help the neurologic practitioner treat patients with three types of epilepsy causing mutations, namely (1) SCN1A, a sodium channel gene mutated in Dravet's sporadic severe myoclonic epilepsy of infancy (SMEI and SMEB); (2) laforin (dual specificity protein phosphatase) and malin (ubiquitin E3 ligase) in Lafora progressive myoclonic epilepsy (PME); and (3) cystatin B in Unverricht-Lundborg type of PME. Laforin, malin, and cystatin B are non-ion channel gene mutations that cause PME. Genotyping ensures accurate diagnosis, helps treatment and genetic counseling, psychological and social help for patients and families, and directs families to organizations devoted to finding cures for specific epilepsy diseases. In SCN1A and cystatin B mutations, treatment with sodium channel blockers (phenytoin, carbamazepine, oxcarbazepine, lamotrigine) should be avoided. Because of early and correct diagnosis by genotyping of SCN1A mutations, the avoidance of sodium channel blockers, and aggressive treatment of prolonged convulsive status, there is hope that Dravet's syndrome may not be as severe as observed in all past reports. Genotyping also identifies nonsense mutations in Lafora PME. Nonsense mutations can be corrected by premature stop codon readthrough drugs such as gentamicin. The community practitioner together with epilepsy specialists in PME can work together and acquire gentamicin (Barton-Davis et al., 1999) for "compassionate use" in Lafora PME, a generalized lysosome multiorgan storage disorder that is invariably fatal. In Unverricht-Lundborg PME, new cohorts with genotyped cystatin B mutations have led to the chronic use of antioxidant N-acetylcysteine and combination valproate clobazam or clonazepam plus antimyoclonic drugs topiramate, zonisamide, piracetam, levetiracetam, or brivaracetam. These cohorts have minimal ataxia and no dementia, questioning whether the syndrome is truly progressive. In conclusion, not only is genotyping a prerequisite in the diagnosis of Dravet's syndrome and the progressive myoclonus epilepsies, but it also helps us choose the correct antiepileptic drugs to treat seizures in Dravet's syndrome and Unverricht-Lundborg PME. Genotyping also portends a brighter future, helping us to reassess the true course, severity, and progressive nature of Dravet's syndrome and Unverricht-Lundborg PME and helping us craft a future curative treatment for Dravet's syndrome and Lafora disease. Without the genotyping diagnosis of epilepsy causing mutations we are stuck with imprecise diagnosis and symptomatic treatment of seizures. CON: Genotyping of epilepsy may help to better understand the genetics of epilepsy, to establish an etiology in a patient with epilepsy, to provide genetic counseling, and to confirm a clinical diagnosis. However, critical analysis reveals that genotyping does not contribute to an improved treatment for the patients. In order to improve treatment, genotyping would have to (1) improve our ability to select the drug of choice for a given epilepsy or epileptic syndrome; (2) improve our ability to predict the individual risk of adverse reactions to certain drugs; (3) improve our ability to avoid unnecessary treatments or treatments that could aggravate seizures. Many example illustrate the lack of impact of genetic information on the treatment outcome: we do not treat Dravet syndrome more successfully since SCN1A testing became available; we do not treat Lafora disease more successfully since testing for laforin and malin became available; we do not need to know the genetic nature of Unverricht-Lundborg disease or test for the cystatin B mutation in order to select or avoid certain drugs; we do not treat Rett syndrome more successfully since MECP2 testing became available; we do not treat JME more successfully since we know its genetic origin; we do not treat autosomal dominant nocturnal frontal lobe epilepsy more successfully since we know its genetic origin and can test for its mutation. The clinical characteristics as well as the response to treatment of these epilepsy syndromes have been well established before genotyping became available. It can not be argued that genotyping is necessary for establishing a diagnosis or ensure accurate diagnosis. Since not all individuals with given syndromes have been shown to have the corresponding mutation, the clinical diagnosis must have been based on well-established clinical criteria. In addition, the presence or absence of the mutation in a given patient has never been shown to specifically predict the response to any form of treatment, positive or negative. Finally, the appropriate psychological and social help in a given patient will not depend on the identification of a mutation. This does not leave any role for genotyping in epilepsy for the sole reason of improving treatment of the patient. Claiming that the result of genotyping predicts optimal treatment in certain epilepsies is equivalent to stating that genotyping for diabetes has become available and that, based on this breakthrough, insulin can now be selected as the treatment of choice in those who test positive.
在过去十年中,基因分型已开始帮助神经科医生治疗由三种导致突变的癫痫类型的患者,即:(1)SCN1A,一种在婴儿期Dravet型散发性严重肌阵挛癫痫(SMEI和SMEB)中发生突变的钠通道基因;(2)拉福林(双特异性蛋白磷酸酶)和马啉(泛素E3连接酶)与拉福拉进行性肌阵挛癫痫(PME)有关;(3)胱抑素B与Unverricht-Lundborg型PME有关。拉福林、马啉和胱抑素B是非离子通道基因突变,可导致PME。基因分型可确保准确诊断,有助于治疗和遗传咨询,为患者及其家庭提供心理和社会帮助,并引导家庭联系致力于寻找特定癫痫疾病治疗方法的组织。对于SCN1A和胱抑素B突变,应避免使用钠通道阻滞剂(苯妥英、卡马西平、奥卡西平、拉莫三嗪)进行治疗。由于通过SCN1A突变的基因分型能够早期且正确地诊断,避免使用钠通道阻滞剂,并积极治疗持续性惊厥状态,因此有望使Dravet综合征不像过去所有报告中所观察到的那么严重。基因分型还可识别拉福拉PME中的无义突变。无义突变可通过诸如庆大霉素等提前终止密码子通读药物进行校正。社区医生与PME领域的癫痫专家可以共同努力,获取庆大霉素(Barton-Davis等人,1999年),以便在拉福拉PME中“同情用药”,拉福拉PME是一种全身性溶酶体多器官贮积症,最终会导致死亡。在Unverricht-Lundborg PME中,新的具有胱抑素B突变基因分型的队列研究表明,可长期使用抗氧化剂N-乙酰半胱氨酸以及丙戊酸与氯巴占或氯硝西泮的联合用药,再加上抗肌阵挛药物托吡酯、唑尼沙胺、吡拉西坦、左乙拉西坦或布瓦西坦。这些队列研究中的患者共济失调症状轻微且无痴呆症状,这使人质疑该综合征是否真的呈进行性发展。总之,基因分型不仅是诊断Dravet综合征和进行性肌阵挛癫痫的先决条件,而且还帮助我们选择正确的抗癫痫药物来治疗Dravet综合征和Unverricht-Lundborg PME中的癫痫发作。基因分型还预示着一个更光明的未来,帮助我们重新评估Dravet综合征和Unverricht-Lundborg PME的真实病程、严重程度和进行性本质,并帮助我们为Dravet综合征和拉福拉病制定未来可能的治愈性治疗方案。如果没有对导致突变的癫痫进行基因分型诊断,我们将只能停留在癫痫发作的不精确诊断和对症治疗上。
癫痫的基因分型可能有助于更好地理解癫痫的遗传学,为癫痫患者确定病因,提供遗传咨询,并确认临床诊断。然而,批判性分析表明,基因分型对改善患者的治疗并无帮助。为了改善治疗,基因分型必须做到以下几点:(1)提高我们为特定癫痫或癫痫综合征选择首选药物的能力;(2)提高我们预测个体对某些药物不良反应风险的能力;(3)提高我们避免不必要治疗或可能加重癫痫发作的治疗的能力。许多例子表明遗传信息对治疗结果并无影响:自从有了SCN1A检测以来,我们治疗Dravet综合征的成功率并未提高;自从有了拉福林和马啉检测以来,我们治疗拉福拉病的成功率并未提高;我们无需了解Unverricht-Lundborg病的遗传本质或检测胱抑素B突变,就能选择或避免某些药物;自从有了MECP2检测以来,我们治疗雷特综合征的成功率并未提高;自从了解了青少年肌阵挛癫痫(JME)的遗传起源以来,我们治疗JME的成功率并未提高;自从了解了常染色体显性遗传性夜间额叶癫痫的遗传起源并能检测其突变以来,我们治疗该病的成功率并未提高。在基因分型出现之前,这些癫痫综合征的临床特征以及对治疗的反应就已经得到了充分的确定。不能认为基因分型对于确立诊断是必要的,或者能确保准确诊断。由于并非所有患有特定综合征的个体都被证明存在相应的突变,所以临床诊断必定是基于已确立的临床标准。此外,从未有证据表明特定患者中突变的存在与否能具体预测对任何形式治疗的反应,无论是正面还是负面的。最后,对于特定患者而言,适当的心理和社会帮助并不取决于是否识别出突变。仅以改善患者治疗为由,基因分型在癫痫治疗中并无任何作用。声称基因分型结果能预测某些癫痫的最佳治疗方案,就如同宣称糖尿病的基因分型检测已经出现,并且基于这一突破,现在可以选择胰岛素作为检测呈阳性患者的首选治疗方法一样。