Suppr超能文献

一项针对预测的微小RNA靶点的表达荟萃分析确定了肺癌的诊断特征。

An expression meta-analysis of predicted microRNA targets identifies a diagnostic signature for lung cancer.

作者信息

Liang Yu

机构信息

Division of Molecular Cell Biology-Assay R&D, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, CA 94404, USA.

出版信息

BMC Med Genomics. 2008 Dec 16;1:61. doi: 10.1186/1755-8794-1-61.

Abstract

BACKGROUND

Patients diagnosed with lung adenocarcinoma (AD) and squamous cell carcinoma (SCC), two major histologic subtypes of lung cancer, currently receive similar standard treatments, but resistance to adjuvant chemotherapy is prevalent. Identification of differentially expressed genes marking AD and SCC may prove to be of diagnostic value and help unravel molecular basis of their histogenesis and biologies, and deliver more effective and specific systemic therapy.

METHODS

MiRNA target genes were predicted by union of miRanda, TargetScan, and PicTar, followed by screening for matched gene symbols in NCBI human sequences and Gene Ontology (GO) terms using the PANTHER database that was also used for analyzing the significance of biological processes and pathways within each ontology term. Microarray data were extracted from Gene Expression Omnibus repository, and tumor subtype prediction by gene expression used Prediction Analysis of Microarrays.

RESULTS

Computationally predicted target genes of three microRNAs, miR-34b/34c/449, that were detected in human lung, testis, and fallopian tubes but not in other normal tissues, were filtered by representation of GO terms and their ability to classify lung cancer subtypes, followed by a meta-analysis of microarray data to classify AD and SCC. Expression of a minimal set of 17 predicted miR-34b/34c/449 target genes derived from the developmental process GO category was identified from a training set to classify 41 AD and 17 SCC, and correctly predicted in average 87% of 354 AD and 82% of 282 SCC specimens from total 9 independent published datasets. The accuracy of prediction still remains comparable when classifying 103 AD and 79 SCC samples from another 4 published datasets that have only 14 to 16 of the 17 genes available for prediction (84% and 85% for AD and SCC, respectively). Expression of this signature in two published datasets of epithelial cells obtained at bronchoscopy from cigarette smokers, if combined with cytopathology of the cells, yielded 89-90% sensitivity of lung cancer detection and 87-90% negative predictive value to non-cancer patients.

CONCLUSION

This study focuses on predicted targets of three lung-enriched miRNAs, compares their expression patterns in lung cancer by their GO terms, and identifies a minimal set of genes differentially expressed in AD and SCC, followed by validating this gene signature in multiple published datasets. Expression of this gene signature in bronchial epithelial cells of cigarette smokers also has a great sensitivity to predict the patients having lung cancer if combined with cytopathology of the cells.

摘要

背景

被诊断为肺腺癌(AD)和肺鳞癌(SCC)这两种肺癌主要组织学亚型的患者,目前接受相似的标准治疗,但辅助化疗耐药很常见。鉴定区分AD和SCC的差异表达基因可能具有诊断价值,并有助于揭示它们组织发生和生物学的分子基础,以及提供更有效和特异的全身治疗。

方法

通过miRanda、TargetScan和PicTar联合预测miRNA靶基因,随后在NCBI人类序列和基因本体论(GO)术语中筛选匹配的基因符号,使用PANTHER数据库,该数据库也用于分析每个本体术语内生物学过程和途径的显著性。从基因表达综合数据库提取微阵列数据,通过微阵列的预测分析进行肿瘤亚型预测。

结果

在人肺、睾丸和输卵管中检测到但在其他正常组织中未检测到的三种microRNA(miR-34b/34c/449)的计算预测靶基因,通过GO术语的代表性及其对肺癌亚型分类的能力进行筛选,随后对微阵列数据进行荟萃分析以区分AD和SCC。从发育过程GO类别中鉴定出一组最少的17个预测的miR-34b/34c/449靶基因的表达,用于对41例AD和17例SCC进行分类,并在来自9个独立已发表数据集的总共354例AD和282例SCC标本中平均正确预测87%和82%。当对来自另外4个已发表数据集的103例AD和79例SCC样本进行分类时,预测准确性仍然相当,这些数据集中只有17个基因中的14至16个可用于预测(AD和SCC分别为84%和85%)。在吸烟者支气管镜检查获得的上皮细胞的两个已发表数据集中,如果结合细胞的细胞病理学,该特征的表达产生89 - 90%的肺癌检测敏感性和87 - 90%对非癌症患者的阴性预测值。

结论

本研究聚焦于三种肺富集miRNA的预测靶标,通过它们的GO术语比较它们在肺癌中的表达模式,鉴定出在AD和SCC中差异表达的一组最少基因,随后在多个已发表数据集中验证该基因特征。如果结合细胞的细胞病理学,该基因特征在吸烟者支气管上皮细胞中的表达对预测患有肺癌的患者也具有很高的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b8/2633354/788bac5ad160/1755-8794-1-61-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验