Nevin Linda M, Taylor Michael R, Baier Herwig
Department of Physiology, University of California, San Francisco, CA 94158, USA.
Neural Dev. 2008 Dec 16;3:36. doi: 10.1186/1749-8104-3-36.
Neuronal connections are often arranged in layers, which are divided into sublaminae harboring synapses with similar response properties. It is still debated how fine-grained synaptic layering is established during development. Here we investigated two stratified areas of the zebrafish visual pathway, the inner plexiform layer (IPL) of the retina and the neuropil of the optic tectum, and determined if activity is required for their organization.
The IPL of 5-day-old zebrafish larvae is composed of at least nine sublaminae, comprising the connections between different types of amacrine, bipolar, and ganglion cells (ACs, BCs, GCs). These sublaminae were distinguished by their expression of cell type-specific transgenic fluorescent reporters and immunohistochemical markers, including protein kinase Cbeta (PKC), parvalbumin (Parv), zrf3, and choline acetyltransferase (ChAT). In the tectum, four retinal input layers abut a laminated array of neurites of tectal cells, which differentially express PKC and Parv. We investigated whether these patterns were affected by experimental disruptions of retinal activity in developing fish. Neither elimination of light inputs by dark rearing, nor a D, L-amino-phosphono-butyrate-induced reduction in the retinal response to light onset (but not offset) altered IPL or tectal lamination. Moreover, thorough elimination of chemical synaptic transmission with Botulinum toxin B left laminar synaptic arrays intact.
Our results call into question a role for activity-dependent mechanisms - instructive light signals, balanced on and off BC activity, Hebbian plasticity, or a permissive role for synaptic transmission - in the synaptic stratification we examined. We propose that genetically encoded cues are sufficient to target groups of neurites to synaptic layers in this vertebrate visual system.
神经元连接通常分层排列,这些层又被分为具有相似反应特性突触的亚层。在发育过程中精细的突触分层是如何建立的,目前仍存在争议。在这里,我们研究了斑马鱼视觉通路的两个分层区域,即视网膜的内网状层(IPL)和视顶盖的神经毡,并确定其组织结构是否需要活性。
5日龄斑马鱼幼虫的IPL由至少九个亚层组成,包括不同类型无长突细胞、双极细胞和神经节细胞(ACs、BCs、GCs)之间的连接。这些亚层通过细胞类型特异性转基因荧光报告基因和免疫组织化学标记物的表达来区分,包括蛋白激酶Cβ(PKC)、小白蛋白(Parv)、zrf3和胆碱乙酰转移酶(ChAT)。在视顶盖中,四个视网膜输入层与视顶盖细胞神经突的分层阵列相邻,这些神经突差异表达PKC和Parv。我们研究了发育中的鱼视网膜活性的实验性破坏是否会影响这些模式。通过暗饲养消除光输入,以及用D,L-氨基膦酰丁酸诱导的视网膜对光起始(而非光熄灭)反应的降低,均未改变IPL或视顶盖的分层。此外,用肉毒杆菌毒素B彻底消除化学突触传递后,层状突触阵列仍保持完整。
我们的结果对我们所研究的突触分层中依赖活性的机制——指导性光信号、BC活性的平衡开与关、赫布可塑性或突触传递的许可作用——的作用提出了质疑。我们提出,在这个脊椎动物视觉系统中,基因编码的线索足以将神经突群靶向到突触层。