Suppr超能文献

通过人工神经网络建模改进能量消耗估计。

Improved estimation of energy expenditure by artificial neural network modeling.

作者信息

Hay Dean Charles, Wakayama Akinobu, Sakamura Ken, Fukashiro Senshi

机构信息

Faculty of Education, Nipissing University, North Bay, ON P1B8L7, Canada.

出版信息

Appl Physiol Nutr Metab. 2008 Dec;33(6):1213-22. doi: 10.1139/h08-117.

Abstract

Estimation of energy expenditure in daily living conditions can be a tool for clinical assessment of health status, as well as a self-measure of lifestyle and general activity levels. Criterion measures are either prohibitively expensive or restricted to laboratory settings. Portable devices (heart rate monitors, pedometers) have gained recent popularity, but accuracy of the prediction equations remains questionable. This study applied an artificial neural network modeling approach to the problem of estimating energy expenditure with different dynamic inputs (accelerometry, heart rate above resting (HRar), and electromyography (EMG)). Nine feed-forward back-propagation models were trained, with the goal of minimizing the mean squared error (MSE) of the training datasets. Model 1 (accelerometry only) and model 2 (HRar only) performed poorly and had significantly greater MSE than all other models (p < 0.001). Model 3 (combined accelerometry and HRar) had overall performance similar to EMG models. Validation of all models was performed by simulating untrained datasets. MSE of all models increased when tested with validation data. While models 1 and 2 again performed poorly, model 3 MSE was lower than all but 2 EMG models. Squared correlation coefficients of measured and predicted energy expenditure for models 3 to 9 ranged from 0.745 to 0.817. Analysis of mean error within specific movement categories indicates that EMG models may be better at predicting higher-intensity energy expenditure, but combined accelerometry and HRar provides an economical solution, with sufficient accuracy.

摘要

在日常生活条件下估算能量消耗,既可以作为临床评估健康状况的一种工具,也可以作为衡量生活方式和总体活动水平的一种自我手段。标准测量方法要么成本过高,要么仅限于实验室环境。便携式设备(心率监测器、计步器)近来颇受欢迎,但预测方程的准确性仍存在疑问。本研究将人工神经网络建模方法应用于利用不同动态输入(加速度测量、静息心率以上的心率(HRar)和肌电图(EMG))估算能量消耗的问题。训练了九个前馈反向传播模型,目标是使训练数据集的均方误差(MSE)最小化。模型1(仅加速度测量)和模型2(仅HRar)表现不佳,其MSE显著高于所有其他模型(p < 0.001)。模型3(加速度测量和HRar相结合)的总体性能与肌电图模型相似。通过模拟未训练的数据集对所有模型进行验证。当用验证数据进行测试时,所有模型的MSE均增加。虽然模型1和2再次表现不佳,但模型3的MSE低于除2个肌电图模型外的所有其他模型。模型3至9的测量和预测能量消耗的平方相关系数在0.745至0.817之间。对特定运动类别内平均误差的分析表明,肌电图模型在预测高强度能量消耗方面可能更好,但加速度测量和HRar相结合提供了一种经济的解决方案,且具有足够的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验