Suppr超能文献

通过诺西-胡佛分子动力学方程对扩展相空间体积守恒积分器进行数值检验。

Numerical examination of the extended phase-space volume-preserving integrator by the Nosé-Hoover molecular dynamics equations.

作者信息

Queyroy Séverine, Nakamura Haruki, Fukuda Ikuo

机构信息

Fujitsu Limited, 1-9-3 Nakase, Mihama-ku, Chiba 261-8588, Japan.

出版信息

J Comput Chem. 2009 Sep;30(12):1799-815. doi: 10.1002/jcc.21181.

Abstract

This article illustrates practical applications to molecular dynamics simulations of the recently developed numerical integrators [Phys Rev E 2006, 73, 026703] for ordinary differential equations. This method consists of extending any set of ordinary differential equations in order to define a time invariant function, and then use the techniques of divergence-free solvable decomposition and symmetric composition to obtain volume-preserving integrators in the extended phase space. Here, we have developed the technique by constructing multiple extended-variable formalism in order to enhance the handling in actual simulation, and by constituting higher order integrators to obtain further accuracies. Using these integrators, we perform constant temperature molecular dynamics simulations of liquid water, liquid argon and peptide in liquid water droplet. The temperature control is obtained through an extended version of the Nosé-Hoover equations. Analyzing the effects of the simulation conditions including time step length, initial values, boundary conditions, and equation parameters, we investigate local accuracy, global accuracy, computational cost, and sensitivity along with the sampling validity. According to the results of these simulations, we show that the volume-preserving integrators developed by the current method are more effective than traditional integrators that lack the volume-preserving property.

摘要

本文阐述了最近开发的用于常微分方程的数值积分器[《物理评论E》2006年,第73卷,026703]在分子动力学模拟中的实际应用。该方法包括扩展任何一组常微分方程以定义一个时间不变函数,然后使用无散可解分解和对称组合技术在扩展相空间中获得保体积积分器。在此,我们通过构建多个扩展变量形式来开发该技术,以增强实际模拟中的处理能力,并通过构建高阶积分器来获得更高的精度。使用这些积分器,我们对液态水、液态氩以及液态水滴中的肽进行恒温分子动力学模拟。温度控制是通过诺西-胡佛方程的扩展版本实现的。通过分析包括时间步长、初始值、边界条件和方程参数在内的模拟条件的影响,我们研究了局部精度、全局精度、计算成本和灵敏度以及采样有效性。根据这些模拟结果,我们表明通过当前方法开发的保体积积分器比缺乏保体积特性的传统积分器更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验