Suppr超能文献

使用单反射毛细管和双聚焦波荡器光束的高通量硬X射线微束。

High-flux hard X-ray microbeam using a single-bounce capillary with doubly focused undulator beam.

作者信息

Barrea Raul A, Huang Rong, Cornaby Sterling, Bilderback Donald H, Irving Thomas C

机构信息

The Biophysics Collaborative Access Team (BioCAT), CSRRI and Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.

出版信息

J Synchrotron Radiat. 2009 Jan;16(Pt 1):76-82. doi: 10.1107/S0909049508039782. Epub 2008 Dec 21.

Abstract

A pre-focused X-ray beam at 12 keV and 9 keV has been used to illuminate a single-bounce capillary in order to generate a high-flux X-ray microbeam. The BioCAT undulator X-ray beamline 18ID at the Advanced Photon Source was used to generate the pre-focused beam containing 1.2 x 10(13) photons s(-1) using a sagittal-focusing double-crystal monochromator and a bimorph mirror. The capillary entrance was aligned with the focal point of the pre-focused beam in order to accept the full flux of the undulator beam. Two alignment configurations were tested: (i) where the center of the capillary was aligned with the pre-focused beam (;in-line') and (ii) where one side of the capillary was aligned with the beam (;off-line'). The latter arrangement delivered more flux (3.3 x 10(12) photons s(-1)) and smaller spot sizes (< or =10 microm FWHM in both directions) for a photon flux density of 4.2 x 10(10) photons s(-1) microm(-2). The combination of the beamline main optics with a large-working-distance (approximately 24 mm) capillary used in this experiment makes it suitable for many microprobe fluorescence applications that require a micrometer-size X-ray beam and high flux density. These features are advantageous for biological samples, where typical metal concentrations are in the range of a few ng cm(-2). Micro-XANES experiments are also feasible using this combined optical arrangement.

摘要

已使用能量为12 keV和9 keV的预聚焦X射线束照射单反射毛细管,以产生高通量X射线微束。先进光子源的BioCAT波荡器X射线束线18ID用于通过矢状聚焦双晶单色仪和双压电晶片镜产生包含1.2×10¹³ 光子·秒⁻¹ 的预聚焦束。毛细管入口与预聚焦束的焦点对齐,以接收波荡器束的全部通量。测试了两种对准配置:(i) 毛细管中心与预聚焦束对齐(“在线”)和 (ii) 毛细管一侧与束对齐(“离线”)。对于4.2×10¹⁰ 光子·秒⁻¹·微米⁻² 的光子通量密度,后一种配置可提供更多通量(3.3×10¹² 光子·秒⁻¹)和更小的光斑尺寸(两个方向上的半高宽均≤10微米)。该实验中使用的具有大工作距离(约24毫米)的毛细管与束线主光学元件相结合,使其适用于许多需要微米级X射线束和高通量密度的微探针荧光应用。这些特性对于生物样品是有利的,其典型金属浓度在几纳克·厘米⁻² 的范围内。使用这种组合光学装置进行微X射线吸收近边结构(Micro-XANES)实验也是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/709b/2644884/36b5171b9917/s-16-00076-fig1.jpg

相似文献

1
High-flux hard X-ray microbeam using a single-bounce capillary with doubly focused undulator beam.
J Synchrotron Radiat. 2009 Jan;16(Pt 1):76-82. doi: 10.1107/S0909049508039782. Epub 2008 Dec 21.
2
Optical design and performance of the biological small-angle X-ray scattering beamline at the Taiwan Photon Source.
J Synchrotron Radiat. 2021 Nov 1;28(Pt 6):1954-1965. doi: 10.1107/S1600577521009565. Epub 2021 Oct 18.
3
Fast-scanning high-flux microprobe for biological X-ray fluorescence microscopy and microXAS.
J Synchrotron Radiat. 2010 Jul;17(4):522-9. doi: 10.1107/S0909049510016869. Epub 2010 May 26.
4
SPring-8 BL41XU, a high-flux macromolecular crystallography beamline.
J Synchrotron Radiat. 2013 Nov;20(Pt 6):910-3. doi: 10.1107/S0909049513022176. Epub 2013 Oct 2.
6
Beamline X29: a novel undulator source for X-ray crystallography.
J Synchrotron Radiat. 2006 Sep;13(Pt 5):365-72. doi: 10.1107/S0909049506027853. Epub 2006 Aug 12.
7
Combining flat crystals, bent crystals and compound refractive lenses for high-energy X-ray optics.
J Synchrotron Radiat. 2004 Mar 1;11(Pt 2):150-6. doi: 10.1107/S0909049503023586. Epub 2004 Feb 12.
8
XAFS experiments at beamline I811, MAX-lab synchrotron source, Sweden.
J Synchrotron Radiat. 2006 Sep;13(Pt 5):359-64. doi: 10.1107/S0909049506025611. Epub 2006 Aug 12.
9
Sub-micrometre focusing of intense 100 keV X-rays with multilayer reflective optics.
J Synchrotron Radiat. 2024 Mar 1;31(Pt 2):276-281. doi: 10.1107/S1600577524000213. Epub 2024 Feb 22.
10
X-SPEC: a 70 eV to 15 keV undulator beamline for X-ray and electron spectroscopies.
J Synchrotron Radiat. 2021 Mar 1;28(Pt 2):609-617. doi: 10.1107/S1600577520016318. Epub 2021 Feb 10.

引用本文的文献

1
X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source.
J Synchrotron Radiat. 2014 Sep;21(Pt 5):1200-5. doi: 10.1107/S1600577514012259. Epub 2014 Aug 8.
2
Phase-space analysis and experimental results for secondary focusing at X-ray beamlines.
J Synchrotron Radiat. 2010 Sep;17(5):644-52. doi: 10.1107/S0909049510024337. Epub 2010 Jul 15.
3
Fast-scanning high-flux microprobe for biological X-ray fluorescence microscopy and microXAS.
J Synchrotron Radiat. 2010 Jul;17(4):522-9. doi: 10.1107/S0909049510016869. Epub 2010 May 26.
4
Microcrystallography using single-bounce monocapillary optics.
J Synchrotron Radiat. 2010 Mar;17(2):227-36. doi: 10.1107/S0909049509053564. Epub 2010 Jan 19.
5
In situ D-periodic molecular structure of type II collagen.
J Biol Chem. 2010 Mar 5;285(10):7087-96. doi: 10.1074/jbc.M109.060400. Epub 2010 Jan 6.

本文引用的文献

1
Formation of optical images by X-rays.
J Opt Soc Am. 1948 Sep;38(9):766-74. doi: 10.1364/josa.38.000766.
2
Submicrometer hard X-ray focusing using a single-bounce ellipsoidal capillary combined with a Fresnel zone plate.
J Synchrotron Radiat. 2007 Mar;14(Pt 2):227-8. doi: 10.1107/S0909049507004050. Epub 2007 Feb 14.
3
Low-angle synchrotron radiation diffraction with glass-capillary optics.
J Synchrotron Radiat. 1996 May 1;3(Pt 3):97-100. doi: 10.1107/S0909049596001355.
4
Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits.
J Synchrotron Radiat. 2006 Jan;13(Pt 1):74-84. doi: 10.1107/S0909049505038562. Epub 2005 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验